等比數(shù)列的前項(xiàng)和,已知,,,成等差數(shù)列.
(1)求數(shù)列的公比和通項(xiàng);
(2)若是遞增數(shù)列,令,求.
(1)或;(2).
解析試題分析:(1)由,,成等差數(shù)列的,得到,根據(jù)等比數(shù)列的通項(xiàng)公式得出關(guān)于、的方程組,解方程組可得、;(2)由于是遞增數(shù)列,根據(jù)(1)的結(jié)論只有,代入求得的表示式,因?yàn)閿?shù)列是先負(fù)后正的等差數(shù)列,則需要對(duì)分段討論,分別求出.
試題解析:(1)由已知條件得
或 6分
(2)若是遞增數(shù)列,則,
當(dāng)時(shí),;
當(dāng)時(shí),
12分
考點(diǎn):等比、等差數(shù)列的性質(zhì),等差數(shù)列的求和公式的運(yùn)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知數(shù)列{an}和{bn}滿足:a1=λ,an+1=an+n-4,bn=(-1)n(an-3n+21),其中λ為實(shí)數(shù),n為正整數(shù).
(1)對(duì)任意實(shí)數(shù)λ,證明:數(shù)列{an}不是等比數(shù)列;
(2)試判斷數(shù)列{bn}是否為等比數(shù)列,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列的首項(xiàng)為(),前項(xiàng)和為,且().設(shè),().
(1)求數(shù)列的通項(xiàng)公式;
(2)當(dāng)時(shí),若對(duì)任意,恒成立,求的取值范圍;
(3)當(dāng)時(shí),試求三個(gè)正數(shù),,的一組值,使得為等比數(shù)列,且,,成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知等比數(shù)列的公比為,是的前項(xiàng)和.
(1)若,,求的值;
(2)若,,有無最值?并說明理由;
(3)設(shè),若首項(xiàng)和都是正整數(shù),滿足不等式:,且對(duì)于任意正整數(shù)有成立,問:這樣的數(shù)列有幾個(gè)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
等比數(shù)列{an}的各項(xiàng)均為正數(shù),且2a1+3a2=1,a32=9a2a6.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè),求數(shù)列的前n項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
大學(xué)生自主創(chuàng)業(yè)已成為當(dāng)代潮流.某大學(xué)大三學(xué)生夏某今年一月初向銀行貸款兩萬元作開店資金,全部用作批發(fā)某種商品.銀行貸款的年利率為6%,約定一年后一次還清貸款.已知夏某每月月底獲得的利潤(rùn)是該月月初投人資金的15%,每月月底需要交納個(gè)人所得稅為該月所獲利潤(rùn)的20%,當(dāng)月房租等其他開支1500元,余款作為資金全部投入批發(fā)該商品再經(jīng)營(yíng),如此繼續(xù),假定每月月底該商品能全部賣出.
(1)設(shè)夏某第n個(gè)月月底余元,第n+l個(gè)月月底余元,寫出a1的值并建立與的遞推關(guān)系;
(2)預(yù)計(jì)年底夏某還清銀行貸款后的純收入.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
數(shù)列{an}是公比為的等比數(shù)列,且1-a2是a1與1+a3的等比中項(xiàng),前n項(xiàng)和為Sn;數(shù)列{bn}是等差數(shù)列,b1=8,其前n項(xiàng)和Tn滿足Tn=n·bn+1(為常數(shù),且≠1).
(I)求數(shù)列{an}的通項(xiàng)公式及的值;
(Ⅱ)比較+++ +與Sn的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com