【題目】有以下命題:
①對任意的α∈R都有sin3α=3sinα﹣4sin3α成立;
②對任意的△ABC都有等式a=bcosA+ccosB成立;
③滿足“三邊是連續(xù)的三個正整數(shù)且最大角是最小的2倍”的三角形存在且唯一;
④若A,B是鈍角△ABC的二銳角,則sinA+sinB<cosA+cosB.
其中正確的命題的個數(shù)是( )
A.4
B.3
C.2
D.1
【答案】A
【解析】解:①對任意的α∈R都有sin3α=sin(α+2α)
=sinαcos2α+cosαsin2α
=sinα(cos2α﹣sin2α)+2sinαcos2α
=sinα(1﹣2sin2α)+2sinα(1﹣sin2α)
=3sinα﹣4sin3α,
故①正確;
②對任意的△ABC都有 =2R,
∴a=2RsinA
=2Rsin(B+C)
=2RsinBcosC+2RsinCcosB
=bcosC+ccosB,
故②正確;
③假設存在正整數(shù)k、k+1、k﹣1分別為三角形ABC的三邊長,
且其對應的角分別為A、B、C,
∴ =2R,
∵B=2C,
∴sinB=sin2C=2sinCcosC,
∴ = ,即cosC= + ,
又∵C<A<B,即C<A<2C,
∴36°<C<45°,
∴ <cosC< ,即 < + < ,
∴ ﹣ < < ﹣ ,
∴ +1<k﹣1< 2,
∴ +2<k< 3,
∴k=4或k=5,
經(jīng)檢驗可知當k=5時不滿足題意,
故③正確;
④∵A,B是鈍角△ABC的二銳角,
∴A+B<90°,
∴0°<B<90°﹣A<90°,
∴sinB<sin(90°﹣A)=cosB,
同理cosA>cos(90°﹣B)=sinA,
∴sinA+sinB<cosA+cosB,
故④正確;
故選:A.
【考點精析】通過靈活運用命題的真假判斷與應用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關系即可以解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】. 問:是否存在正數(shù)m,使得對于任意正數(shù),可使為三角形的三邊構成三角形?如果存在:①試寫出一組x,y,m的值,②求出所有m的值;如果不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位有員工1000名,平均每人每年創(chuàng)造利潤10萬元.為了增加企業(yè)競爭力,決定優(yōu)化產(chǎn)業(yè)結構,調整出x(x∈N*)名員工從事第三產(chǎn)業(yè),調整后他們平均每人每年創(chuàng)造利潤為10(a﹣ )萬元(a>0),剩下的員工平均每人每年創(chuàng)造的利潤為原來(1+ )倍.
(1)若要保證剩余員工創(chuàng)造的年總利潤不低于原來1000名員工創(chuàng)造的年總利潤,則最多可以整出多少名員工從事第三產(chǎn)業(yè);
(2)若調整出的員工創(chuàng)造的年總利潤始終不高于剩余員工創(chuàng)造的年總利潤,則a的最大取值是多少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為選拔參加“央視猜燈謎大賽”的隊員,在校內組織猜燈謎競賽.規(guī)定:第一階段知識測試成績不小于分的學生進入第二階段比賽.現(xiàn)有名學生參加知識測試,并將所有測試成績繪制成如下所示的頻率分布直方圖.
(1)估算這名學生測試成績的中位數(shù),并求進入第二階段比賽的學生人數(shù);
(2)將進入第二階段的學生分成若干隊進行比賽.現(xiàn)甲、乙兩隊在比賽中均已獲得分,進入最后強答階段.搶答規(guī)則:搶到的隊每次需猜條謎語,猜對條得分,猜錯條扣分.根據(jù)經(jīng)驗,甲隊猜對每條謎語的概率均為,乙隊猜對每條謎語的概率均為,猜對第條的概率均為.若這兩條搶到答題的機會均等,您做為場外觀眾想支持這兩隊中的優(yōu)勝隊,會把支持票投給哪隊?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在△ABC中,tanA是以﹣4為第三項,4為第七項的等差數(shù)列的公差,tanB是以2為公差,9為第五項的等差數(shù)列的第二項,則這個三角形是( )
A.銳角三角形
B.鈍角三角形
C.等腰直角三角形
D.等腰或直角三角形
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4—4:坐標系與參數(shù)方程
在平面直角坐標系中曲線經(jīng)伸縮變換后得到曲線,在以為極點, 軸的正半軸為極軸的極坐標系中,曲線的極坐標方程為.
(1)求曲線的參數(shù)方程和的直角坐標方程;
(2)設為曲線上的一點,又向曲線引切線,切點為,求的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為推行“新課堂”教學法,某化學老師分別用傳統(tǒng)教學和“新課堂”兩種不同的教學方式,在甲、乙兩個平行班進行教學實驗,為了解教學效果,期中考試后,分別從兩個班級中各隨機抽取名學生的成績進行統(tǒng)計,作出的莖葉圖如下圖,記成績不低于分者為“成績優(yōu)良”.
(1)分別計算甲、乙兩班個樣本中,化學分數(shù)前十的平均分,并據(jù)此判斷哪種教學方式的教學效果更
佳;
(2)甲、乙兩班個樣本中,成績在分以下(不含分)的學生中任意選取人,求這人來自不同班級的概率;
(3)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為“成績優(yōu)良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
附:
獨立性檢驗臨界值表:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com