【題目】下列說法中, 正確說法的個數(shù)是( )

①在用列聯(lián)表分析兩個分類變量之間的關(guān)系時,隨機變量的觀測值越大,說明“AB有關(guān)系的可信度越大

②以模型去擬合一組數(shù)據(jù)時,為了求出回歸方程,設(shè),將其變換后得到線性方程,則的值分別是和 0.3

③已知兩個變量具有線性相關(guān)關(guān)系,其回歸直線方程為,若,,,則

A.0B.1C.2D.3

【答案】D

【解析】

對題目中的三個命題判斷正誤,即可得出結(jié)論.

解:對于,分類變量AB的隨機變量K2越大,

說明“AB有關(guān)系”的可信度越大,正確;

對于,以模型ycekx去擬合一組數(shù)據(jù)時,設(shè)zlny,

ycekx,兩邊取對數(shù),可得lnylncekx)=lnc+lnekxlnc+kx,

zlny,可得zlnc+kx,

z0.3x+4,

lnc4,k0.3ce4,正確;

對于,根據(jù)回歸直線方程為ya+bx,

ab32×11,∴正確;

綜上,正確的命題為①②③,共3個.

故選:D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,橢圓C:(a>b>0)的離心率為,短軸長是2.

(1)求橢圓C的方程;

(2)設(shè)橢圓C的下頂點為D,過點D作兩條互相垂直的直線l1,l2,這兩條直線與橢圓C的另一個交點分別為M,N.設(shè)l1的斜率為k(k≠0),△DMN的面積為S,當,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為等差數(shù)列,,.

(1) 求數(shù)列的通項公式;

(2)求數(shù)列的前n項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐中,,,的中點..

1)求證:平面平面;

2)若的中點,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知函數(shù)

(Ⅰ)討論函數(shù)的單調(diào)增區(qū)間;

(Ⅱ)是否存在負實數(shù)a,使,函數(shù)有最小值-3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】中國古代十進制的算籌計數(shù)法,在世界數(shù)學史上是一個偉大的創(chuàng)造. 算籌實際上是一根根同樣長短的小木棍,用算籌表示數(shù)1~9的方法如圖:例如:163可表示為“”,27可表示為“”.現(xiàn)有6根算籌,用來表示不能被10整除的兩位數(shù),算籌必須用完,則這樣的兩位數(shù)的個數(shù)為_________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了了解某校學生課外時間的分配情況,擬采用分層抽樣的方法從該校的高一、高二、高三這三個年級中共抽取5個班進行調(diào)查,已知該校的高一、高二、高三這三個年級分別有18、6、6個班級.

(Ⅰ)求分別從高一、高二、高三這三個年級中抽取的班級個數(shù);

(Ⅱ)若從抽取的5個班級中隨機抽取2個班級進行調(diào)查結(jié)果的對比,求這2個班級中至少有1個班級來自高一年級的概率。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列是各項都不為0的無窮數(shù)列,對任意的n≥3,n, 恒成立.

(1)如果,成等差數(shù)列,求實數(shù)的值;

(2)已知=1.①求證:數(shù)列是等差數(shù)列;②已知數(shù)列中,.數(shù)列是公比為q的等比數(shù)列,滿足,(i).求證:q是整數(shù),且數(shù)列中的任意一項都是數(shù)列中的項.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,直線,下面五個命題:

①對任意實數(shù),直線和圓有公共點;

②存在實數(shù),直線和圓相切;

③存在實數(shù),直線和圓相離;

④對任意實數(shù)必存在實數(shù),使得直線與和圓相切;

⑤對任意實數(shù),必存在實數(shù),使得直線與和圓相切.

其中真命題的代號是______________________(寫出所有真命題的代號).

查看答案和解析>>

同步練習冊答案