【題目】已知函數(shù).

討論函數(shù)的單調(diào)性;

設(shè)的兩個零點是, ,求證: .

【答案】(Ⅰ)答案見解析;(Ⅱ)證明見解析.

【解析】試題分析:(1)先求函數(shù)的定義域,求函數(shù)的導數(shù),在定義域內(nèi)討論函數(shù)的單調(diào)性;

(2)求出a=+x1+x2,問題轉(zhuǎn)化為證明lnx1lnx2,即證明ln(*),令=t(0,1),則h(t)=(1+tlnt2t+2,根據(jù)函數(shù)的單調(diào)性證明即可.

試題解析: 函數(shù)的定義域為,

,

①當時, , ,則上單調(diào)遞增;

②當時, 時, , 時,

上單調(diào)遞增,在上單調(diào)遞減.

首先易知,且上單調(diào)遞增,在上單調(diào)遞減,

不妨設(shè),

,

構(gòu)造,

,上單調(diào)遞增,

,即,

, 是函數(shù)的零點且,

, 均大于,所以,所以,得證.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)圓滿足:(1)截軸所得弦長為2;(2)被軸分成兩段圓弧,其弧長的比為.在滿足條件(1)、(2)的所有圓中,圓心到直線的距離最小的圓的方程為__________.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知幾何體A﹣BCED的三視圖如圖所示,其中俯視圖和側(cè)視圖都是腰長為4的等腰直角三角形,正視圖為直角梯形.

(1)求此幾何體的體積V的大;
(2)求異面直線DE與AB所成角的余弦值;
(3)求二面角A﹣ED﹣B的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】阿海準備購買“海馬”牌一輛小汽車,其中購車費用12.8萬元,每年的保險費、汽油費約為0.95萬元,年維修、保養(yǎng)費第一年是0.1萬元,以后逐年遞增0.1萬元.請你幫阿海計算一下這種汽車使用多少年,它的年平均費用最少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)不等式組 所表示的平面區(qū)域為Dn , 記Dn內(nèi)的格點(格點即橫坐標和縱坐標皆為整數(shù)的點)的個數(shù)為f(n)(n∈N*).
(1)求f(1)、f(2)的值及f(n)的表達式;
(2)設(shè)bn=2nf(n),Sn為{bn}的前n項和,求Sn;
(3)記 ,若對于一切正整數(shù)n,總有Tn≤m成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校為了了解高二年級學生對教師教學的意見,打算從高二年級883名學生中抽取80名進行座談,若采用下面的方法選。合扔煤唵坞S機抽樣從883人中剔除3人,剩下880人再按系統(tǒng)抽樣的方法進行,則每人入選的概率是(
A.
B.
C.
D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,D,E分別為AB,BC的中點,點F在側(cè)棱B1B上,且B1D⊥A1F,A1C1⊥A1B1 . 求證:

(1)直線DE∥平面A1C1F;
(2)平面B1DE⊥平面A1C1F.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)f(k)是滿足不等式log2x+log2(52k1﹣x)≥2k(k∈N*)的自然數(shù)x的個數(shù).
(1)求f(k)的函數(shù)解析式;
(2)Sn=f(1)+2f(2)+…+nf(n),求Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)在區(qū)間上的單調(diào)性;

(2)已知函數(shù),若,且函數(shù)在區(qū)間內(nèi)有零點,求的取值范圍.

查看答案和解析>>

同步練習冊答案