【題目】阿海準(zhǔn)備購買“海馬”牌一輛小汽車,其中購車費(fèi)用12.8萬元,每年的保險(xiǎn)費(fèi)、汽油費(fèi)約為0.95萬元,年維修、保養(yǎng)費(fèi)第一年是0.1萬元,以后逐年遞增0.1萬元.請你幫阿海計(jì)算一下這種汽車使用多少年,它的年平均費(fèi)用最少?
【答案】解:依題意知汽車每年維修、保養(yǎng)費(fèi)依次構(gòu)成以0.1萬元為首項(xiàng),0.1萬元為公差的等差數(shù)列.
因此汽車使用x年總的維修、保養(yǎng)費(fèi)用為 =0.05x(x+1)萬元,
設(shè)汽車的年平均費(fèi)用為y萬元,
則有y= =1+ +0.05x(x>0),
由x>0,可得 +0.05x≥2 =1.6,
當(dāng)且僅當(dāng) ,即x=16時等號成立.
則y≥2.6,當(dāng)x=16時,取得最小值2.6.
答:這種汽車使用16年時,它的年平均費(fèi)用最少.
【解析】由題意可得每年維修、保養(yǎng)費(fèi)依次構(gòu)成以0.1萬元為首項(xiàng),0.1萬元為公差的等差數(shù)列,運(yùn)用等差數(shù)列的求和公式,設(shè)汽車的年平均費(fèi)用為y萬元,則有y= =1+ +0.05x(x>0),再由基本不等式即可得到所求最小值,及等號成立的條件.
【考點(diǎn)精析】本題主要考查了基本不等式在最值問題中的應(yīng)用的相關(guān)知識點(diǎn),需要掌握用基本不等式求最值時(積定和最小,和定積最大),要注意滿足三個條件“一正、二定、三相等”才能正確解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(Ⅰ)若函數(shù)的圖像在點(diǎn)處的切線與直線平行,求實(shí)數(shù)的值;
(Ⅱ)討論函數(shù)的單調(diào)性;
(Ⅲ)若在函數(shù)定義域內(nèi),總有成立,試求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個圓錐的底面半徑為2cm,高為6cm,其中有一個高為xcm的內(nèi)接圓柱.
(1)試用x表示圓柱的側(cè)面積;
(2)當(dāng)x為何值時,圓柱的側(cè)面積最大.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓經(jīng)過點(diǎn),離心率,直線的方程為.
求橢圓的方程;
是經(jīng)過右焦點(diǎn)的任一弦(不經(jīng)過點(diǎn)),設(shè)直線與直線相交于點(diǎn),記, , 的斜率為, , .問:是否存在常數(shù),使得?若存在,求的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】交強(qiáng)險(xiǎn)是車主必須為機(jī)動車購買的險(xiǎn)種,若普通6座以下私家車投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時,實(shí)行的是費(fèi)率浮動機(jī)制,保費(fèi)與上一年度車輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就越高,具體浮動情況如表:
交強(qiáng)險(xiǎn)浮動因素和浮動費(fèi)率比率表 | ||
浮動因素 | 浮動比率 | |
上一個年度未發(fā)生有責(zé)任道路交通事故 | 下浮10% | |
上兩個年度未發(fā)生有責(zé)任道路交通事故 | 下浮20% | |
上三個及以上年度未發(fā)生有責(zé)任道路交通事故 | 下浮30% | |
上一個年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故 | 0% | |
上一個年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故 | 上浮10% | |
上一個年度發(fā)生有責(zé)任道路交通死亡事故 | 上浮30% |
某機(jī)構(gòu)為了研究某一品牌普通6座以下私家車的投保情況,隨機(jī)抽取了60輛車齡已滿三年的該品牌同型號私家車的下一年續(xù)保時的情況,統(tǒng)計(jì)得到了下面的表格:
類型 | ||||||
數(shù)量 | 10 | 5 | 5 | 20 | 15 | 5 |
以這60輛該品牌車的投保類型的頻率代替一輛車投保類型的概率,完成下列問題:
按照我國《機(jī)動車交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車交強(qiáng)險(xiǎn)價格的規(guī)定, .某同學(xué)家里有一輛該品牌車且車齡剛滿三年,記為該品牌車在第四年續(xù)保時的費(fèi)用,求的分布列與數(shù)學(xué)期望值;(數(shù)學(xué)期望值保留到個位數(shù)字)
某二手車銷售商專門銷售這一品牌的二手車,且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車輛記為事故車.假設(shè)購進(jìn)一輛事故車虧損5000元,一輛非事故車盈利10000元:
①若該銷售商購進(jìn)三輛(車齡已滿三年)該品牌二手車,求這三輛車中至多有一輛事故車的概率;
②若該銷售商一次購進(jìn)100輛(車齡已滿三年)該品牌二手車,求他獲得利潤的期望值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)P(1,1),過點(diǎn)P動直線l與圓C:x2+y2﹣2y﹣4=0交與點(diǎn)A,B兩點(diǎn).
(1)若|AB|= ,求直線l的傾斜角;
(2)求線段AB中點(diǎn)M的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)計(jì)一個計(jì)算的算法.下面給出了程序的一部分,則在橫線①上不能填入下面的哪一個數(shù)( )
A.13
B.13.5
C.14
D.14.5
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com