【題目】已知直線:x+y﹣1=0,
(1)若直線過(guò)點(diǎn)(3,2)且∥,求直線的方程;
(2)若直線過(guò)與直線2x﹣y+7=0的交點(diǎn),且⊥,求直線的方程.
【答案】(1) ; (2).
【解析】
(1)由題意和平行關(guān)系設(shè)直線l1的方程為x+y+m=0,再代入點(diǎn)(3,2),可求得結(jié)果;(2)解方程組 可得坐標(biāo),∵l2⊥l,∴直線l2的斜率k=1代入點(diǎn)坐標(biāo)可得到結(jié)果.
(1)由題意和平行關(guān)系設(shè)直線l1的方程為x+y+m=0,
∵直線l1過(guò)點(diǎn)(3,2),∴3+2+m=0,
解得m=﹣5,直線l1的方程為x+y﹣5=0;
(2)解方程組 可得,
∴直線l與直線2x﹣y+7=0的交點(diǎn)為(﹣2,3)
∵l2⊥l,∴直線l2的斜率k=1,
∴直線方程為x﹣y+5=0
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】袋中有大小、形狀相同的紅、黑球各一個(gè),現(xiàn)一次有放回地隨機(jī)摸取3次,每次摸取一個(gè)球
(I)試問(wèn):一共有多少種不同的結(jié)果?請(qǐng)列出所有可能的結(jié)果;
(Ⅱ)若摸到紅球時(shí)得2分,摸到黑球時(shí)得1分,求3次摸球所得總分為5的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥AD,AB∥CD,CD⊥AD,AD=CD=2AB=2,E,F(xiàn)分別為PC,CD的中點(diǎn),DE=EC.
(1)求證:平面ABE⊥平面BEF;
(2)設(shè)PA=a,若平面EBD與平面ABCD所成銳二面角 ,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知公差不為0的等差數(shù)列{an}中,a1=2,且a2+1,a4+1,a8+1成等比數(shù)列.
(1)求數(shù)列{an}通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn= ,求適合方程b1b2+b2b3+…+bnbn+1= 的正整數(shù)n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】函數(shù)f(x)=Asin(ωx+ )(ω>0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)構(gòu)成一個(gè)公差為 的等差數(shù)列,要得到函數(shù)g(x)=Asinωx的圖象,只需將f(x)的圖象( )
A.向左平移 個(gè)單位
B.向右平移 個(gè)單位
C.向左平移 個(gè)單位
D.向右平移 個(gè)單位
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0, ]時(shí),函數(shù) y=f(x)的最小值為 ,試確定常數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知向量 =(cos ,﹣1), =( sin ,cos2 ),設(shè)函數(shù)f(x)= +1.
(1)若x∈[0, ],f(x)= ,求cosx的值;
(2)在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,且滿足2bcosA≤2c﹣ a,求f(B)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,圓錐的軸截面為等腰直角△SAB,Q為底面圓周上一點(diǎn).
(1)若QB的中點(diǎn)為C,OH⊥SC,求證:OH⊥平面SBQ;
(2)如果∠AOQ=60°,QB=2,求此圓錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的部分圖象如圖所示,若將f(x)圖象上的所有點(diǎn)向右平移 個(gè)單位得到函數(shù)g(x)的圖象,則函數(shù)g(x)的單調(diào)遞增區(qū)間為( )
A.[kπ﹣ ,kπ+ ],k∈Z
B.[2kπ﹣ ,2kπ+ ],k∈Z
C.[kπ﹣ ,kπ+ ],k∈Z
D.[2kπ﹣ ,2kπ+ ],k∈Z
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com