精英家教網 > 高中數學 > 題目詳情

【題目】袋中有大小、形狀相同的紅、黑球各一個,現一次有放回地隨機摸取3次,每次摸取一個球

I)試問:一共有多少種不同的結果?請列出所有可能的結果;

)若摸到紅球時得2分,摸到黑球時得1分,求3次摸球所得總分為5的概率。

【答案】I)一共有8種不同的結果;

3次摸球所得總分為5的概率為。

【解析】

試題分析:(1)由分步計數原理知這個過程一共有8個結果,按照一定的順序列舉出所有的事件,順序可以是按照紅球的個數由多變少變化,這樣可以做到不重不漏.

2)本題是一個等可能事件的概率,由前面可知試驗發(fā)生的所有事件數,而滿足條件的事件包含的基本事件為:(紅、紅、黑)、(紅、黑、紅)、(黑、紅、紅),根據古典概型公式得到結果.

解:(I)一共有8種不同的結果,列舉如下:

(紅、紅、紅、)、(紅、紅、黑)、(紅、黑、紅)、(紅、黑、黑)、(黑、紅、紅)、(黑、紅、黑)、(黑、黑、紅)、(黑、黑、黑)

)本題是一個等可能事件的概率

“3次摸球所得總分為5”為事件A

事件A包含的基本事件為:(紅、紅、黑)、(紅、黑、紅)、(黑、紅、紅)事件A包含的基本事件數為3

由(I)可知,基本事件總數為8,

事件A的概率為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知奇函數f(x)定義域為(﹣∞,0)∪(0,+∞),f′(x)為其導函數,且滿足以下條件①x>0時,f′(x)< ;②f(1)= ;③f(2x)=2f(x),則不等式 <2x2的解集為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某景點擬建一個扇環(huán)形狀的花壇(如圖所示),按設計要求扇環(huán)的周長為36米,其中大圓弧所在圓的半徑為14米,設小圓弧所在圓的半徑為米,圓心角為(弧度).

關于的函數關系式;

已知對花壇的邊緣(實線部分)進行裝飾時,直線部分的裝飾費用為4/米,弧線部分的裝飾費用為16/米,設花壇的面積與裝飾總費用之比為,求關于的函數關系式,并求出的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列集合中表示同一集合的是( )

A.,B.

C.,D.,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】拋擲兩枚骰子,求:

(1)點數之和為4的倍數的概率;

(2)點數之和大于5而小于10的概率;

(3)同時拋兩枚骰子,求至少有一個5點或者6點的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二項式展開式中各項系數之和比各二項式系數之和大240,

(1)求;(2)求展開式中含項的系數;(3)求展開式中所有含的有理項.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】A{x|2x2ax20},B{x|x23x2a0},且AB{2}

(1)a的值及集合A,B;

(2)設全集UAB,求(UA)(UB);

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數列{an}中an= (n∈N*),將數列{an}中的整數項按原來的順序組成數列{bn},則b2018的值為(
A.5035
B.5039
C.5043
D.5047

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某科技創(chuàng)新公司在第一年年初購買了一臺價值昂貴的設備,該設備的第1年的維護費支出為20萬元,從第2年到第6年,每年的維修費增加4萬元,從第7年開始,每年維修費為上一年的125%.

(1)求第n年該設備的維修費的表達式;

(2)設,若萬元,則該設備繼續(xù)使用,否則須在第n年對設備更新,求在第幾年必須對該設備進行更新?

查看答案和解析>>

同步練習冊答案