直線y=1與曲線y=x2-|x|+a有四個(gè)交點(diǎn),則實(shí)數(shù)a的取值范圍是(  )
分析:直線y=1與曲線y=x2-|x|+a有四個(gè)交點(diǎn)?函數(shù)y=1-a與函數(shù)y=x2-|x|的圖象由四個(gè)不同的交點(diǎn),畫出圖象即可得出.
解答:解:分別作出函數(shù)y=1-a,y=x2-|x|=
(x-
1
2
)2-
1
4
,當(dāng)x≥0時(shí)
(x+
1
2
)2-
1
4
,當(dāng)x<0時(shí)
的圖象,
由圖象可知:函數(shù)y=x2-|x|的值域?yàn)?span id="dnfxrv5" class="MathJye">[-
1
4
,+∞),
要使函數(shù)y=1-a與函數(shù)y=x2-|x|的圖象由四個(gè)不同的交點(diǎn),則a必須滿足-
1
4
<1-a<0

解得1<a<
5
4
,即直線y=1與曲線y=x2-|x|+a有四個(gè)交點(diǎn).
故選D.
點(diǎn)評(píng):熟練掌握函數(shù)的奇偶性、單調(diào)性及數(shù)形結(jié)合是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=1與曲線y=x2-|x|+a有四個(gè)交點(diǎn),則a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線y=1與曲線y=-x2+2所圍成圖形的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線y=1與曲線y=-x2+2所圍圖形的面積是
 

精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知以下四個(gè)命題:
①如果x1,x2是一元二次方程ax2+bx+c=0的兩個(gè)實(shí)根,且x1<x2,那么不等式ax2+bx+c<0的解集為
{x|x1<x<x2};
②“若m>2,則x2-2x+m>0的解集是實(shí)數(shù)集R”的逆否命題;
③若
x-1
x-2
≤0,則(x-1)(x-2)≤0.
④直線y=1與曲線y=x2-|x|+a有四個(gè)交點(diǎn),則a的取值范圍是(1,
5
4
)

其中為真命題的是
 
(填上你認(rèn)為正確的序號(hào))

查看答案和解析>>

同步練習(xí)冊(cè)答案