如圖,直線y=1與曲線y=-x2+2所圍圖形的面積是
 

精英家教網(wǎng)
分析:先根據(jù)題意畫出的區(qū)域,然后依據(jù)圖形交點(diǎn)得到積分下限,積分上限,從而利用定積分表示出曲邊梯形的面積,最后用定積分的定義求出所求即可.
解答:解:根據(jù)所給圖形,先將y=1代入y=-x2+2得:
得到積分上限為1,積分下限為-1,
直線y=1與曲線y=-x2+2所圍圖形的面積S=∫-11(2-x2-1)dx
而∫-11(1-x2)dx=(x-
1
3
x3
)|-11=
4
3

∴所圍圖形的面積是
4
3

故答案為:
4
3
點(diǎn)評(píng):本題主要考查了學(xué)生會(huì)求出原函數(shù)的能力,以及考查了數(shù)形結(jié)合的思想,同時(shí)會(huì)利用定積分求圖形面積的能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x0,過(guò)M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x0表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2007•廣州一模)如圖,已知曲線C1:y=x2與曲線C2:y=-x2+2ax(a>1)交于點(diǎn)O,A,直線x=t(0<t≤1)與曲線C1,C2分別相交于點(diǎn)D,B,連結(jié)OD,DA,AB,OB.
(1)寫出曲邊四邊形ABOD(陰影部分)的面積S與t的函數(shù)關(guān)系式S=f(t);
(2)求函數(shù)S=f(t)在區(qū)間(0,1]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x0,過(guò)M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x0表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年吉林省長(zhǎng)春十一中高二(上)段考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x,過(guò)M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年吉林省長(zhǎng)春十一中高二(上)段考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

如圖,由y=0,x=8,y=x2圍成了曲邊三角形OAB,M為曲線弧OB上一點(diǎn),
設(shè)M點(diǎn)的橫坐標(biāo)為x,過(guò)M作y=x2的切線PQ
(1)求PQ所在直線的方程(用x表示);
(2)當(dāng)PQ與OA,AB圍成的三角形PQA面積最大時(shí),求x

查看答案和解析>>

同步練習(xí)冊(cè)答案