【題目】某公司統(tǒng)計了2010~2018年期間公司年收的增加值(萬元)以及相應(yīng)的年增長率,所得數(shù)據(jù)如下所示:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
代碼 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
增加值 | 1555 | 2100 | 2220 | 2740 | 3135 | 3563 | 4041 | 5494.4 | 6475 |
增長率 |
|
(1)通過散點圖可知,可用線性回歸模型擬合2010~2014年與的關(guān)系;
①求2010~2014年這5年期間公司年利潤的增加值的平均數(shù);
②求關(guān)于的線性回歸方程;
(2)從哪年開始連續(xù)三年公司利潤增加值的方差最大?(不需要說明理由)
附:參考公式:回歸直線方程中的斜率和截距的最小二乘估計公式分別為,.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形中,,,點在上,且,將沿折起,使得平面平面(如圖2).為中點
(1)求證:;
(2)求四棱錐的體積;
(3)在線段上是否存在點,使得平面?若存在,求的值;若不存在,請說明理由
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),
(Ⅰ)若在函數(shù)的定義域內(nèi)存在區(qū)間,使得該函數(shù)在區(qū)間上為減函數(shù),求實數(shù)的取值范圍;
(Ⅱ)當時,若曲線在點處的切線與曲線有且只有一個公共點,求實數(shù)的值或取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的圖象在點處的切線方程;
(2)若在上有解,求的取值范圍;
(3)設(shè)是函數(shù)的導函數(shù),是函數(shù)的導函數(shù),若函數(shù)的零點為,則點恰好就是該函數(shù)的對稱中心.試求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(1)當時,求函數(shù)的單調(diào)增區(qū)間;
(2)當時,求函數(shù)在區(qū)間上的最大值;
(3)對任意,恒有,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中國古代數(shù)學著作《算法統(tǒng)綜》中有這樣一個問題:“三百七十八里關(guān),初步健步不為難,次日腳痛減一半,六朝才得到其關(guān),要見次日行里數(shù),請公仔細算相還”其大意為:“有一個人走378里路,第一天健步走,從第二天起因腳痛每天走的路程為前一天的一半,走了6天后到達目的地”,請問此人第5天走的路程為( )
A. 36里 B. 24里 C. 18里 D. 12里
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在矩形中,,,為邊的中點.將△沿翻折,得到四棱錐.設(shè)線段的中點為,在翻折過程中,有下列三個命題:
① 總有平面;
② 三棱錐體積的最大值為;
③ 存在某個位置,使與所成的角為.
其中正確的命題是____.(寫出所有正確命題的序號)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知BD為圓錐AO底面的直徑,若,C是圓錐底面所在平面內(nèi)一點,,且AC與圓錐底面所成角的正弦值為.
(1)求證:平面平面ACD;
(2)求二面角的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】今年由于豬肉漲價太多,更多市民選擇購買雞肉、鴨肉、魚肉等其它肉類.某天在市場中隨機抽出100名市民調(diào)查,其中不買豬肉的人有30位,買了肉的人有90位,買豬肉且買其它肉的人共30位,則這一天該市只買豬肉的人數(shù)與全市人數(shù)的比值的估計值為____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com