【題目】雙曲線C1a0,b0)的左右焦點為F1,F2|F1F2|2c),以坐標(biāo)原點O為圓心,以c為半徑作圓A,圓A與雙曲線C的一個交點為P,若三角形F1PF2的面積為a2,則C的離心率為_____

【答案】

【解析】

不妨設(shè)為右支上一點,設(shè),運用雙曲線的定義和直徑所對的圓周角為直角,結(jié)合勾股定理和三角形的面積公式,可得的關(guān)系式,即可求解雙曲線的離心率,得到答案.

不妨設(shè)P為右支上一點,設(shè)|PF1|m,|PF2|n

由雙曲線的定義可得mn2a,

由題意可得PF1F2為直角三角形,且∠F1PF290°,

可得m2+n24c2,且mna2,

由(mn2m2+n22mn4c24a24a2,即為ca

可得e.

故答案為:.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對點的直線l分別交兩點.

(1)設(shè)的面積為,求直線l的方程;

(2)當(dāng)最小時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點,及圓

1)求過點的圓的切線方程;

2)若過點的直線與圓相交,截得的弦長為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓過點,其長軸、焦距和短軸的長的平方依次成等差數(shù)列直線lx軸正半軸和y軸分別交于點Q、P,與橢圓分別交于點MN,各點均不重合且滿足

求橢圓的標(biāo)準(zhǔn)方程;

,試證明:直線l過定點并求此定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以為極點,軸為正半軸為極軸建立極坐標(biāo)系.已知曲線的極坐標(biāo)方程為 ,直線與曲線相交于兩點,直線過定點且傾斜角為交曲線兩點.

(1)把曲線化成直角坐標(biāo)方程,并求的值;

(2)若成等比數(shù)列,求直線的傾斜角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在矩形中,,點的中點,將沿折起到的位置,使二面角是直二面角.

1證明: ;

2求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C1y21的左右頂點是雙曲線C2的頂點,且橢圓C1的上頂點到雙曲線C2的漸近線的距離為

(1)求雙曲線C2的方程;

(2)若直線與C1相交于M1,M2兩點,與C2相交于Q1,Q2兩點,且5,求|M1M2|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(一),在直角梯形中,,,的中點,將沿折起,使點到達點的位置得到圖(二),點為棱上的動點.

(1)當(dāng)在何處時,平面平面,并證明;

(2)若,,證明:點到平面的距離等于點到平面的距離,并求出該距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=-ln(x+m).

(1)設(shè)x=0f(x)的極值點,求m,并討論f(x)的單調(diào)性;

2)當(dāng)m≤2時,證明f(x)>0.

查看答案和解析>>

同步練習(xí)冊答案