【題目】已知橢圓C1y21的左右頂點是雙曲線C2的頂點,且橢圓C1的上頂點到雙曲線C2的漸近線的距離為

(1)求雙曲線C2的方程;

(2)若直線與C1相交于M1,M2兩點,與C2相交于Q1,Q2兩點,且5,求|M1M2|的取值范圍.

【答案】(1)y21;(2)|M1M2|∈(0,]

【解析】

1)由橢圓的頂點可得,求出雙曲線的漸近線方程,運用點到直線的距離公式可得,進而得到雙曲線的方程;

2)設(shè)出直線的方程,聯(lián)立雙曲線方程,消去,運用韋達定理和判別式大于0,結(jié)合向量的數(shù)量積的坐標運算,求得的關(guān)系式,再由直線方程和橢圓的方程聯(lián)立,運用韋達定理和弦長公式,即可求得的取值范圍.

(1)由橢圓C1y21的左右頂點為(,0),(,0),可得a23,

又橢圓C1的上頂點(01)到雙曲線C2的漸近線bxay0的距離為,

由點到直線的距離公式有可得b1

所以雙曲線C2的方程為y21;

(2)易知直線l的斜率存在,設(shè)直線l的方程為ykx+m,

代入y21,消去y并整理得(13k2x26kmx3m230,

要與C2相交于兩點,則應(yīng)有①,

設(shè)Q1x1,y1)、Q2x2,y2),則有:x1+x2,x1x2

x1x2+y1y2x1x2+kx1+m)(kx2+m)=(1+k2x1x2+kmx1+x2+m2,

5,所以有[1+k2)(﹣3m23+6k2m2+m213k2]=﹣5

整理得m219k2②,

ykx+m,代入y21,消去y并整理得:(1+3k2x2+6kmx+3m230,

要有兩交點,則36k2m241+3k2)(3m23)>03k2+1m2

由①②③有:0k2

設(shè)M1x3y3)、M2x4,y4),則有:x3+x4,x3x4

所以|M1M2|,

m219k2,代入有:|M1M2||M1M2|

|M1M2|12,令tk2,則t∈(0,],

ftft,又t∈(0,],

所以f't)>0t∈(0,]內(nèi)恒成立,故函數(shù)ft)在t∈(0,]內(nèi)單調(diào)遞增,

ft)∈(0,],則有|M1M2|∈(0,]

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】某工廠為提高生產(chǎn)效率,開展技術(shù)創(chuàng)新活動,提出了完成某項生產(chǎn)任務(wù)的兩種新的生產(chǎn)方式.為比較兩種生產(chǎn)方式的效率,選取40名工人,將他們隨機分成兩組,每組20人,第一組工人用第一種生產(chǎn)方式,第二組工人用第二種生產(chǎn)方式.根據(jù)工人完成生產(chǎn)任務(wù)的工作時間(單位:min)繪制了莖葉圖:則下列結(jié)論中表述不正確的是

A. 第一種生產(chǎn)方式的工人中,有75%的工人完成生產(chǎn)任務(wù)所需要的時間至少80分鐘

B. 第二種生產(chǎn)方式比第一種生產(chǎn)方式的效率更高

C. 這40名工人完成任務(wù)所需時間的中位數(shù)為80

D. 無論哪種生產(chǎn)方式的工人完成生產(chǎn)任務(wù)平均所需要的時間都是80分鐘.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,居民小區(qū)要建一座八邊形的休閑場所,它的主體造型平面圖是由兩個相同的矩形構(gòu)成的面積為的十字形地域,計劃在正方形上建一座花壇,造價為/;在四個相同的矩形(圖中陰影部分)上鋪上花崗巖地坪,造價為/;再在四個空角(圖中四個三角形,如)上鋪草坪,造價為/

1)設(shè)總造價為(單位:元),長為(單位:),試求出關(guān)于的函數(shù)關(guān)系式,并求出定義域;

2)當取何值時,總造價最小,并求出這個最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】雙曲線C1a0b0)的左右焦點為F1,F2|F1F2|2c),以坐標原點O為圓心,以c為半徑作圓A,圓A與雙曲線C的一個交點為P,若三角形F1PF2的面積為a2,則C的離心率為_____

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的焦距為短半軸的長為2,過點P(-2,1)且斜率為1的直線l與橢圓C交于AB兩點

(1)求橢圓C的方程;

(2)求弦AB的長

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術(shù)》中,將底面為長方形且有一條側(cè)棱與底面垂直的四棱錐稱之為陽馬,將四個面都為直角三角形的四面體稱之為鱉臑.首屆中國國際進口博覽會的某展館棚頂一角的鋼結(jié)構(gòu)可以抽象為空間圖形陽馬.如圖所示,在陽馬中,底面

1)若,斜梁與底面所成角為,求立柱的長(精確到);

2)證明:四面體為鱉臑;

3)若,,,為線段上一個動點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學生在開學季準備銷售一種文具套盒進行試創(chuàng)業(yè),在一個開學季內(nèi),每售出1盒該產(chǎn)品獲利潤50元;未售出的產(chǎn)品,每盒虧損30元根據(jù)歷史資料,得到開學季市場需求量的頻率分布直方圖,如圖所示,該同學為這個開學季購進了160盒該產(chǎn)品,以單位:盒,表示這個開學季內(nèi)的市場需求量,單位:元表示這個開學季內(nèi)經(jīng)銷該產(chǎn)品的利潤

根據(jù)直方圖估計這個開學季內(nèi)市場需求量x的平均數(shù)和眾數(shù);

將y表示為x的函數(shù);

根據(jù)直方圖估計利潤不少于4800元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】A地的天氣預(yù)報顯示,A地在今后的三天中,每一天有強濃霧的概率為,現(xiàn)用隨機模擬的方法估計這三天中至少有兩天有強濃霧的概率,先利用計算器產(chǎn)生之間整數(shù)值的隨機數(shù),并用0,1,2,3,4,5,6表示沒有強濃霧,用7,8,9表示有強濃霧,再以每3個隨機數(shù)作為一組,代表三天的天氣情況,產(chǎn)生了如下20組隨機數(shù):

402  978  191  925  273  842  812  479  569  683

231  357  394  027  506  588  730  113  537  779

則這三天中至少有兩天有強濃霧的概率近似為  

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一班的一次數(shù)學測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

1求分數(shù)在的頻數(shù)及全班人數(shù);

2求分數(shù)在之間的頻數(shù),并計算頻率分布直方圖中間矩形的高;

3若要從分數(shù)在之間的試卷中任取兩份分析學生失分情況,求在抽取的試卷中,至少有一份分數(shù)在之間的概率.

查看答案和解析>>

同步練習冊答案