【題目】如圖,在中,已知點D在邊AB上,AD=3DB,
, ,BC=13.
(1)求的值;
(2)求CD的長.
【答案】(1) (2)9
【解析】試題分析:(1)在△ABC中,求出sinA=,sin∠ACB=,
可得cosB=-cos(A+∠ACB)=sinAsin∠ACB-cosAcosB;
(2)在△ABC中,由正弦定理得,AB= ∠ACB.
在△BCD中,由余弦定理得,CD=代入即得解.
試題解析:
(1)在△ABC中, cosA=,A,
所以 sinA=.
同理可得sin∠ACB=.
所以cosB=-cos( –(A+∠ACB))= -cos(A+∠ACB)=sinAsin∠ACB-cosAcosB=.
(2)在△ABC中,由正弦定理得, AB= ∠ACB =.
又AD=3DB,所以
又在△BCD 中,由余弦定理得,
CD=
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x+1|﹣|x|﹣2
(1)解不等式f(x)≥0
(2)若存在實數(shù)x,使得f(x)≤|x|+a,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)f(x)在x≥0時的圖象是如圖所示的拋物線的一部分,
(1)請補全函數(shù)f(x)的圖象
(2)求函數(shù)f(x)的表達式,
(3)寫出函數(shù)f(x)的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,曲線C的參數(shù)方程為 (α為參數(shù)),在以原點為極點,x軸正半軸為極軸的極坐標系中,直線l的極坐標方程為 .
(1)求C的普通方程和l的傾斜角;
(2)設點P(0,2),l和C交于A,B兩點,求|PA|+|PB|.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=ex(ax+b)-x2-4x,曲線y=f(x)在點(0,f(0))處的切線方程為y=4x+4.
(1)求a,b的值;
(2)討論f(x)的單調(diào)性,并求f(x)的極大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙、丙、丁四位同學得到方程2x+e﹣0.3x﹣100=0(其中e=2.7182…)的大于零的近似解依次為①50;②50.1;③49.5;④50.001,你認為的答案為最佳近似解(請?zhí)罴住⒁、丙、丁中的一個)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) .
(Ⅰ)當a>0時,求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)當a=0時,設函數(shù)g(x)=xf(x)﹣k(x+2)+2.若函數(shù)g(x)在區(qū)間 上有兩個零點,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】海南中學對高二學生進行心理障礙測試得到如下列聯(lián)表:
焦慮 | 說謊 | 懶惰 | 總計 | |
女生 | 5 | 10 | 15 | 30 |
男生 | 20 | 10 | 50 | 80 |
總計 | 25 | 20 | 65 | 110 |
試說明在這三種心理障礙中哪一種與性別關系最大?
參考數(shù)據(jù):K2=
P(K2≥k) | 0.5 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.535 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com