【題目】甲、乙、丙、丁四位同學(xué)得到方程2x+e0.3x﹣100=0(其中e=2.7182…)的大于零的近似解依次為①50;②50.1;③49.5;④50.001,你認(rèn)為的答案為最佳近似解(請?zhí)罴、乙、丙、丁中的一個)

【答案】②
【解析】原方程2x+e0.3x﹣100=0化為:
方程e0.3x=100﹣2x , 分別畫出左右兩邊函數(shù)的圖象,如圖.
y=e0.3x , y=100﹣2x圖象的交點位于x=50的左側(cè),
故方程2x+e0.3x﹣100=0(其中e=2.7182…)的大于零的解小于50,與50比較,排除50.1,50.001.
由于當(dāng)x→50 時,y→0,故方程2x+e0.3x﹣100=0(其中e=2.7182…)的大于零的最佳近似解是50而不是49.5,
所以答案是:②.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線 ,則下列說法正確的是( )

A. 上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

B. 上各點橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移個單位長度,得到曲線

C. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

D. 把曲線向右平移個單位長度,再把得到的曲線上各點橫坐標(biāo)縮短到原來的,縱坐標(biāo)不變,得到曲線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】化簡或求值:
(1)(2 0+22×(2 ﹣(
(2)2(lg 2+lg lg5+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,已知點D在邊AB上,AD=3DB

, ,BC=13.

(1)求的值;

(2)求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)= ,若函數(shù)g(x)=f2(x)﹣axf(x)恰有6個零點,則a的取值范圍是(
A.(0,3)
B.(1,3)
C.(2,3)
D.(0,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知冪函數(shù)y=f(x)的圖象過點
(1)求函數(shù)f(x)的解析式
(2)記g(x)=f(x)+x , 判斷g(x)在(1,+∞)上的單調(diào)性,并證明之.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】多面體, , , , , 在平面上的射影是線段的中點.

(1)求證:平面平面;

(2)若,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x3+ax2+b滿足f(1)=0,且在x=2時函數(shù)取得極值.
(1)求a,b的值;
(2)求函數(shù)f(x)的單調(diào)區(qū)間;
(3)求函數(shù)f(x)在區(qū)間[0,t](t>0)上的最大值g(t)的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù))是定義域為的奇函數(shù).

(1)若,試求不等式的解集;

(2)若,且,求上的最小值.

查看答案和解析>>

同步練習(xí)冊答案