科目: 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AB=5,AC=3,點P為邊AB上一動點(且點P不與點A,B重合),PE⊥BC于E,PF⊥AC于F,點M為EF中點,則PM的最小值為( 。
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個實數(shù)根為x1,x2(x1<x2),分別以x1,x2為橫坐標(biāo)和縱坐標(biāo)得到點M(x1,x2),則稱點M為該一元二次方程的衍生點.
(1)若方程為x2-2x=0,寫出該方程的衍生點M的坐標(biāo).
(2)若關(guān)于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生點為M,過點M向x軸和y軸作垂線,兩條垂線與坐標(biāo)軸恰好圍成一個正方形,求m的值.
(3)是否存在b,c,使得不論k(k≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點M始終在直線y=kx-2(k-2)的圖象上,若有請直接寫出b,c的值,若沒有說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在矩形ABCD中,點E是AD上的一個動點,連接BE,作點A關(guān)于BE的對稱點F,且點F落在矩形ABCD的內(nèi)部,連結(jié)AF、BF、EF,過點F作GF⊥AF交AD于點G,設(shè)AD:AE=n.
(1)線段AE和線段EG的數(shù)量關(guān)系是: ;
(2)如圖②,當(dāng)點F落在AC上時,用含n的代數(shù)式表示AD:AB的值;
(3)若AD=4AB,且△FCG為直角三角形,求n的值.(直接寫出結(jié)果).
查看答案和解析>>
科目: 來源: 題型:
【題目】小敏的爸爸是一家水果店的經(jīng)理.一天,他去水果批發(fā)市場,用100元購進甲種水果,用100元購進乙種水果,已知乙種水果比甲種水果多10千克,乙種水果的批發(fā)價比甲種水果的批發(fā)價低0.5元.
(1)求甲、乙兩種水果各購進了多少千克?
(2)如果當(dāng)天甲、乙兩種水果都按2.80元出售,乙種水果很快售完,而甲種水果先售出,剩余的按售價打5折售完.請你通過計算,說明這一天的水果買賣是否賺錢?如果賺錢,賺了多少元?如果不賺錢,那么賠了多少元?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點D在BC邊上(不與B、C重合),在AC上取一點E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)若BD=n(0<n<2),求線段AE的長;(用含n的代數(shù)式表示)
(3)當(dāng)△ADE是等腰三角形時,請直接寫出AE的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線:y=﹣+4與x軸、y軸分別別交于點M、點N,等邊△ABC的高為3,邊BC在x軸上,將△ABC沿著x軸的正方向平移,在平移過程中,得到△A1B1C1,當(dāng)點B1與原點O重合時,解答下列問題:
(1)點A1的坐標(biāo)為 .
(2)求△A1B1C1的邊A1C1所在直線的解析式;
(3)若以P、A1、C1、M為頂點的四邊形是平行四邊形,請直接寫出P點坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】下列表格是某學(xué)校女子排球隊隊員年齡統(tǒng)計表:
年齡(歲) | 13 | 14 | 15 | 16 |
人數(shù)(人) | 1 | 2 | 4 | 5 |
(1)該排球隊隊員年齡的眾數(shù)是 歲;
(2)事件“從該排球隊隨機選擇一名隊員,其年齡為13歲”發(fā)生的概率為 ;
(3)教練決定從年齡為13歲和14歲的A、B、C三名隊員中,隨機選取兩名隊員進行“接發(fā)球”訓(xùn)練,求隊員A、B同時被選中的概率.(樹狀圖或列表法)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在由邊長為1個單位長度的小正方形組成的10×10網(wǎng)格中,已知點O,A,B均為網(wǎng)格線的交點.
(1)在給定的網(wǎng)格中,以點O為位似中心,將線段AB放大為原來的2倍,得到線段(點A,B的對應(yīng)點分別為).畫出線段;
(2)將線段繞點逆時針旋轉(zhuǎn)90°得到線段.畫出線段;
(3)以為頂點的四邊形的面積是 個平方單位.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC紙板中,AC=4,BC=2,AB=5,P是AC上一點,過點P沿直線剪下一個與△ABC相似的小三角形紙板,如果有4種不同的剪法,那么AP長的取值范圍是__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com