【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個實數(shù)根為x1,x2(x1<x2),分別以x1,x2為橫坐標和縱坐標得到點M(x1,x2),則稱點M為該一元二次方程的衍生點.
(1)若方程為x2-2x=0,寫出該方程的衍生點M的坐標.
(2)若關(guān)于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生點為M,過點M向x軸和y軸作垂線,兩條垂線與坐標軸恰好圍成一個正方形,求m的值.
(3)是否存在b,c,使得不論k(k≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點M始終在直線y=kx-2(k-2)的圖象上,若有請直接寫出b,c的值,若沒有說明理由.
【答案】(1)(0,2);(2)-;(3)b=-6,c=8.
【解析】
(1)求出方程的兩根,根據(jù)一元二次方程的衍生點即可解決問題;
(2)求出方程的兩根,根據(jù)一元二次方程的衍生點的定義,再利用正方形的性質(zhì)構(gòu)建方程即可解決問題;
(3)求出定點,利用根與系數(shù)的關(guān)系解決問題即可.
(1)∵x2-2x=0,
∴x(x-2)=0,
解得:x1=0,x2=2
故方程x2-2x=0的衍生點為M(0,2).
(2)x2-(2m+1)x+2m=0(m<0)∵m<0∴2m<0
解得:x1=2m,x2=1,
方程x2-(2m+1)x+2m=0(m<0)的衍生點為M(2m,1).
點M在第二象限內(nèi)且縱坐標為1,由于過點M向兩坐標軸做垂線,兩條垂線與x軸y軸恰好圍城一個正方形,
所以2m=-1,解得m=.
(3)存在.
直線y=kx-2(k-2)=k(x-2)+4,過定點M(2,4),
∴x2+bx+c=0兩個根為x1=2,x2=4,
∴2+4=-b,2×4=c,
∴b=-6,c=8.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對角線AC、BD相交于點O,且OA=OB
(1)求證:四邊形ABCD是矩形;
(2)若AB=5,∠AOB=60°,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識,回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個長方體紙盒,你認為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請你幫助小明在①上補全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個長方體紙盒的底面是一個正方形,并且這個長方體紙盒所有棱長的和是880cm,求這個長方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的數(shù)陣是由全體奇數(shù)排成:
(1)圖中平行四邊形框內(nèi)的九個數(shù)之和與中間的數(shù)有什么關(guān)系?
(2)在數(shù)陣圖中任意作一類似(1)中的平行四邊形框,這九個數(shù)之和還有這種規(guī)律嗎?請說出理由;
(3)這九個數(shù)之和能等于1998嗎?2005,1017呢?若能,請寫出這九個數(shù)中最小的一個;若不能,請說出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級甲班和乙班各推選10名同學(xué)進行投籃比賽,按照比賽規(guī)則,每人各投了10個球;將兩班選手的進球數(shù)繪制成如下尚不完整的統(tǒng)計圖表:
(1)表格中b=_________.c=_________;并求a的值;
(2)如果要從這兩個班中選出一個班代表年級參加學(xué)校的投籃比賽,爭取奪得總進球數(shù)團體第一名,你認為應(yīng)該選擇哪個班?如果要爭取個人進球數(shù)進入學(xué)校前三名,你認為應(yīng)該選擇哪個班?請說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標系中,菱形ABCD的頂點坐標C(-1,0)、B(0,2)、D(n,2),點A在第二象限.直線y=-x+5與x軸、y軸分別交于點N、M.將菱形ABCD沿x軸向右平移m個單位.當(dāng)點A落在MN上時,則m+n= ________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點F為BE的中點,連接CF,DF.
(1)如圖1,當(dāng)點D在AB上,點E在AC上時
①證明:△BFC是等腰三角形;
②請判斷線段CF,DF的關(guān)系?并說明理由;
(2)如圖2,將圖1中的△ADE繞點A旋轉(zhuǎn)到圖2位置時,請判斷(1)中②的結(jié)論是否仍然成立?并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC、BD相交于點O,BE∥AC,AE∥BD,OE與AB交于點F.
(1)試判斷四邊形AEBO的形狀,并說明理由;
(2)若OE=10,AC=16,求菱形ABCD的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com