【題目】定義:若關(guān)于x的一元二次方程ax2+bx+c=0(a≠0)的兩個(gè)實(shí)數(shù)根為x1,x2(x1<x2),分別以x1,x2為橫坐標(biāo)和縱坐標(biāo)得到點(diǎn)M(x1,x2),則稱點(diǎn)M為該一元二次方程的衍生點(diǎn).
(1)若方程為x2-2x=0,寫出該方程的衍生點(diǎn)M的坐標(biāo).
(2)若關(guān)于x的一元二次方程x2-(2m+1)x+2m=0(m<0)的衍生點(diǎn)為M,過點(diǎn)M向x軸和y軸作垂線,兩條垂線與坐標(biāo)軸恰好圍成一個(gè)正方形,求m的值.
(3)是否存在b,c,使得不論k(k≠0)為何值,關(guān)于x的方程x2+bx+c=0的衍生點(diǎn)M始終在直線y=kx-2(k-2)的圖象上,若有請(qǐng)直接寫出b,c的值,若沒有說明理由.
【答案】(1)(0,2);(2)-;(3)b=-6,c=8.
【解析】
(1)求出方程的兩根,根據(jù)一元二次方程的衍生點(diǎn)即可解決問題;
(2)求出方程的兩根,根據(jù)一元二次方程的衍生點(diǎn)的定義,再利用正方形的性質(zhì)構(gòu)建方程即可解決問題;
(3)求出定點(diǎn),利用根與系數(shù)的關(guān)系解決問題即可.
(1)∵x2-2x=0,
∴x(x-2)=0,
解得:x1=0,x2=2
故方程x2-2x=0的衍生點(diǎn)為M(0,2).
(2)x2-(2m+1)x+2m=0(m<0)∵m<0∴2m<0
解得:x1=2m,x2=1,
方程x2-(2m+1)x+2m=0(m<0)的衍生點(diǎn)為M(2m,1).
點(diǎn)M在第二象限內(nèi)且縱坐標(biāo)為1,由于過點(diǎn)M向兩坐標(biāo)軸做垂線,兩條垂線與x軸y軸恰好圍城一個(gè)正方形,
所以2m=-1,解得m=.
(3)存在.
直線y=kx-2(k-2)=k(x-2)+4,過定點(diǎn)M(2,4),
∴x2+bx+c=0兩個(gè)根為x1=2,x2=4,
∴2+4=-b,2×4=c,
∴b=-6,c=8.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,對(duì)角線AC、BD相交于點(diǎn)O,且OA=OB
(1)求證:四邊形ABCD是矩形;
(2)若AB=5,∠AOB=60°,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問題:
(1)小明總共剪開了_______條棱.
(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.
(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長方體紙盒的底面是一個(gè)正方形,并且這個(gè)長方體紙盒所有棱長的和是880cm,求這個(gè)長方體紙盒的體積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖的數(shù)陣是由全體奇數(shù)排成:
(1)圖中平行四邊形框內(nèi)的九個(gè)數(shù)之和與中間的數(shù)有什么關(guān)系?
(2)在數(shù)陣圖中任意作一類似(1)中的平行四邊形框,這九個(gè)數(shù)之和還有這種規(guī)律嗎?請(qǐng)說出理由;
(3)這九個(gè)數(shù)之和能等于1998嗎?2005,1017呢?若能,請(qǐng)寫出這九個(gè)數(shù)中最小的一個(gè);若不能,請(qǐng)說出理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】八年級(jí)甲班和乙班各推選10名同學(xué)進(jìn)行投籃比賽,按照比賽規(guī)則,每人各投了10個(gè)球;將兩班選手的進(jìn)球數(shù)繪制成如下尚不完整的統(tǒng)計(jì)圖表:
(1)表格中b=_________.c=_________;并求a的值;
(2)如果要從這兩個(gè)班中選出一個(gè)班代表年級(jí)參加學(xué)校的投籃比賽,爭(zhēng)取奪得總進(jìn)球數(shù)團(tuán)體第一名,你認(rèn)為應(yīng)該選擇哪個(gè)班?如果要爭(zhēng)取個(gè)人進(jìn)球數(shù)進(jìn)入學(xué)校前三名,你認(rèn)為應(yīng)該選擇哪個(gè)班?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一名足球守門員練習(xí)折返跑,從球門線出發(fā),向前記作正數(shù),返回記作負(fù)數(shù),他的記錄如下:(單位:米)+5,-3,+10,-8,-6,+12,-10
(1)守門員最后是否回到了球門線的位置?
(2)在練習(xí)過程中,守門員離開球門最遠(yuǎn)距離是多少米?
(3)守門員全部練習(xí)結(jié)束后,他共跑了多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角坐標(biāo)系中,菱形ABCD的頂點(diǎn)坐標(biāo)C(-1,0)、B(0,2)、D(n,2),點(diǎn)A在第二象限.直線y=-x+5與x軸、y軸分別交于點(diǎn)N、M.將菱形ABCD沿x軸向右平移m個(gè)單位.當(dāng)點(diǎn)A落在MN上時(shí),則m+n= ________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC和△ADE都是等腰直角三角形,∠ACB=∠ADE=90°,點(diǎn)F為BE的中點(diǎn),連接CF,DF.
(1)如圖1,當(dāng)點(diǎn)D在AB上,點(diǎn)E在AC上時(shí)
①證明:△BFC是等腰三角形;
②請(qǐng)判斷線段CF,DF的關(guān)系?并說明理由;
(2)如圖2,將圖1中的△ADE繞點(diǎn)A旋轉(zhuǎn)到圖2位置時(shí),請(qǐng)判斷(1)中②的結(jié)論是否仍然成立?并證明你的判斷.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對(duì)角線AC、BD相交于點(diǎn)O,BE∥AC,AE∥BD,OE與AB交于點(diǎn)F.
(1)試判斷四邊形AEBO的形狀,并說明理由;
(2)若OE=10,AC=16,求菱形ABCD的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com