科目: 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB=AC,∠BAC=36°,過點A作AD∥BC,與∠ABC的平分線交于點D,BD與AC交于點E,與⊙O交于點F.
(1)求∠DAF的度數(shù);
(2)求證:AE2=EFED;
查看答案和解析>>
科目: 來源: 題型:
【題目】隨著經(jīng)濟(jì)的快速發(fā)展,環(huán)境問題越來越受到人們的關(guān)注,某校學(xué)生會為了解節(jié)能減排、垃圾分類知識
的普及情況,隨機(jī)調(diào)查了部分學(xué)生,調(diào)查結(jié)果分為“非常了解”“了解”“了解較少”“不了解”四類,
并將檢查結(jié)果繪制成下面兩個統(tǒng)計圖.
(1)本次調(diào)查的學(xué)生共有__________人,估計該校1200 名學(xué)生中“不了解”的人數(shù)是__________人.
(2)“非常了解”的4 人有兩名男生, 兩名女生,若從中隨機(jī)抽取兩人向全校做環(huán)保交流,請利用畫樹狀圖或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目: 來源: 題型:
【題目】若平面直角坐標(biāo)系內(nèi)的點 M 滿足橫、縱坐標(biāo)都為整數(shù),則把點 M 叫做“整點”.例如:P(1,0)、Q(2,-2)都是“整點”.拋物線 y=mx2-2mx+m-1(m>0)與 x 軸交于 A、 B 兩點,若該拋物線在 A、B 之間的部分與線段 AB 所圍成的區(qū)域(包括邊界)恰有 6 個整點,則 m 的取值范圍是( )
A. m B. m C. m D. m
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與直線y=x交于(1,1)和(3,3)兩點,現(xiàn)有以下結(jié)論:①b2﹣4c>0;②3b+c+6=0;③當(dāng)x2+bx+c>時,x>2;④當(dāng)1<x<3時,x2+(b﹣1)x+c<0,其中正確的序號是( 。
A. ①②④B. ②③④C. ②④D. ③④
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,平行四邊形ACDE的一邊在直徑AB上,點E在⊙O上.
(1)如圖1,當(dāng)點D在⊙O上時,請你僅用無刻度的直尺在AB上取點P,使DP⊥AB于P;
(2)如圖2,當(dāng)點D在⊙O內(nèi)時,請你僅用無刻度的直尺在AB上取點Q,使EQ⊥AB于Q.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知,如圖拋物線y=ax2+3ax+c(a>0)與y軸交于點C,與x軸交于A,B兩點,點A在點B左側(cè).點B的坐標(biāo)為(2,0).OC=3OB.
(1)求拋物線的解析式;
(2)若點P是線段AC下方拋物線上的動點,求三角形PAC面積的最大值.
(3)在(2)的條件下,△PAC的面積為S,其中S為整數(shù)的點P作“好點”,則存在多個“好點”,則所有“好點”的個數(shù)為
(4)在(2)的條件下,以PA為邊向直線AC右上側(cè)作正方形APHG,隨著點P的運動,正方形的大小、位置也隨之改變,當(dāng)頂點H或G恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標(biāo).
查看答案和解析>>
科目: 來源: 題型:
【題目】將兩個全等的直角三角形ABC和DBE按圖方式擺放,其中,,點E落在AB上,DE所在直線交AC所在直線于點F.
求證:;
若將圖中的繞點B按順時針方向旋轉(zhuǎn)角a,且,其他條件不變,如圖請你直接寫出與DE的大小關(guān)系:______填“”或“”或“”
若將圖中的繞點B按順時針方向旋轉(zhuǎn)角,且,其他條件不變,如圖請你寫出此時AF、EF與DE之間的關(guān)系,并加以證明.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,有長為 24m 的籬笆,現(xiàn)一面利用墻(墻的最大可用長度 a 為 10m)圍成中間隔有一道籬笆的長方形花圃,設(shè)花圃的寬 AB 為 xm,面積為 Sm2.
(1) 求 S 與 x 的函數(shù)關(guān)系式及 x 值的取值范圍;
(2) 要圍成面積為 45m2 的花圃,AB 的長是多少米?
(3) 當(dāng) AB 的長是多少米時,圍成的花圃的面積最大?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點E,點G在直徑DF的延長線上,∠D=∠G=30°.
(1)求證:CG是⊙O的切線 (2)若CD=6,求GF的長
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com