科目: 來源: 題型:
【題目】如圖,拋物線y=x2+bx+c與直線y=x﹣3交于,B兩點(diǎn),其中點(diǎn)A在y軸上,點(diǎn)B坐標(biāo)為(﹣4,﹣5),點(diǎn)P為y軸左側(cè)的拋物線上一動(dòng)點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,交AB于點(diǎn)D.
(1)求拋物線對(duì)應(yīng)的函數(shù)解析式;
(2)以O,A,P,D為頂點(diǎn)的平行四邊形是否存在若存在,求點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】請(qǐng)你利用直角坐標(biāo)平面上任意兩點(diǎn)(x1,y1)、(x2,y2)間的距離公式解答下列問題:
已知:反比例函數(shù)與正比例函數(shù)y=x的圖象交于A、B兩點(diǎn)(A在第一象限),點(diǎn)F1(﹣2,﹣2)、F2(2,2)在直線y=x上.設(shè)點(diǎn)P(x0,y0)是反比例函數(shù)圖象上的任意一點(diǎn),記點(diǎn)P與F1、F2兩點(diǎn)的距離之差d=|PF1﹣PF2|.試比較線段AB的長度與d的大小,并由此歸納出雙曲線的一個(gè)重要定義(用簡練的語言表述).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,二次函數(shù)y=(x﹣3)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B是點(diǎn)C關(guān)于該二次函數(shù)圖象的對(duì)稱軸對(duì)稱的點(diǎn),已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(1,0)及點(diǎn)B.
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)拋物線上是否存在一點(diǎn)P,使S△ABP=S△ABC?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】有一個(gè)二次函數(shù)滿足以下條件:
①函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)分別為A(1,0),B(x2,y2)(點(diǎn)B在點(diǎn)A的右側(cè));
②對(duì)稱軸是x=3;
③該函數(shù)有最小值是﹣2.
(1)請(qǐng)根據(jù)以上信息求出二次函數(shù)表達(dá)式;
(2)將該函數(shù)圖象x>x2的部分圖象向下翻折與原圖象未翻折的部分組成圖象“G”,平行于x軸的直線與圖象“G”相交于點(diǎn)C(x3,y3)、D(x4,y4)、E(x5,y5)(x3<x4<x5),結(jié)合畫出的函數(shù)圖象求x3+x4+x5的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點(diǎn)A在雙曲線y=(x>0)上,點(diǎn)B在雙曲線y=(x>0)上,且AB∥x軸,BC∥y軸,點(diǎn)C在x軸上,則△ABC的面積為_____.
查看答案和解析>>
科目: 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點(diǎn),點(diǎn)B到拋物線對(duì)稱軸的距離記為d,滿足0<d≤1,則實(shí)數(shù)m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線y=與x軸分別交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè),)與y軸交于點(diǎn)C,作直線AC.
(1)點(diǎn)B的坐標(biāo)為 ,直線AC的關(guān)系式為 .
(2)設(shè)在直線AC下方的拋物線上有一動(dòng)點(diǎn)P,過點(diǎn)P作PD⊥x軸于D,交直線AC于點(diǎn)E,當(dāng)CE平分∠OEP時(shí)求點(diǎn)P的坐標(biāo).
(3)點(diǎn)M在x軸上,點(diǎn)N在拋物線上,試問以點(diǎn)A、C、M、N為頂點(diǎn)的四邊形能否成為平行四邊形?若存在,直接寫出所有點(diǎn)M的坐標(biāo);若不存在,請(qǐng)簡述你的理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】(綜合與實(shí)踐)如圖①,在正方形ABCD中,點(diǎn)E、F分別在射線CD、BC上,且BF=CE,將線段FA繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°得到線段FG,連接EG,試探究線段EG和BF的數(shù)量關(guān)系和位置關(guān)系.
(觀察與猜想)任務(wù)一:“智慧小組”首先考慮點(diǎn)E、F的特殊位置如圖②,當(dāng)點(diǎn)E與點(diǎn)D重合,點(diǎn)F與點(diǎn)C重合時(shí),易知:EG與BF的數(shù)量關(guān)系是 ,EG與BF的位置關(guān)系是 .
(探究與證明)任務(wù)二:“博學(xué)小組”同學(xué)認(rèn)為E、F不一定必須在特殊位置,他們分兩種情況,一種是點(diǎn)E、F分別在CD、BC邊上任意位置時(shí)(如圖③);一種是點(diǎn)E、F在CD、BC邊的延長線上的任意位置時(shí)(如圖④),線段EG與BF的數(shù)量關(guān)系與位置關(guān)系仍然成立.請(qǐng)你選擇其中一種情況給出證明.
(拓展與延伸)“創(chuàng)新小組”同學(xué)認(rèn)為,若將“正方形ABCD”改為“矩形ABCD,且=k(k≠1)”,點(diǎn)E、F分別在射線CD、BC上任意位置時(shí),仍將線段FA繞點(diǎn)F順時(shí)針旋轉(zhuǎn)90°,并適當(dāng)延長得到線段FG,連接EG(如圖⑤),則當(dāng)線段BF、CE、AF、FG滿足一個(gè)條件 時(shí),線段EG與BF的數(shù)量關(guān)系與位置關(guān)系仍然成立.(請(qǐng)你在橫線上直接寫出這個(gè)條件,無需證明)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是垂直于水平面的一座大樓,離大樓20米(BC=20米)遠(yuǎn)的地方有一段斜坡CD(坡度為1:0.75),且坡長CD=10米,某日下午一個(gè)時(shí)刻,在太陽光照射下,大樓的影子落在了水平面BC,斜坡CD,以及坡頂上的水平面DE處(A、B、C、D、E均在同一個(gè)平面內(nèi)).若DE=4米,且此時(shí)太陽光與水平面所夾銳角為24°(∠AED=24°),試求出大樓AB的高.(其中,sin24°≈0.41,cos24°≈0.91,tan24°≈0.45)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com