【題目】請你利用直角坐標平面上任意兩點(x1,y1)、(x2,y2)間的距離公式解答下列問題:
已知:反比例函數(shù)與正比例函數(shù)y=x的圖象交于A、B兩點(A在第一象限),點F1(﹣2,﹣2)、F2(2,2)在直線y=x上.設(shè)點P(x0,y0)是反比例函數(shù)圖象上的任意一點,記點P與F1、F2兩點的距離之差d=|PF1﹣PF2|.試比較線段AB的長度與d的大小,并由此歸納出雙曲線的一個重要定義(用簡練的語言表述).
【答案】見解析
【解析】
解由y=和y=x組成的方程組可得A、B兩點的坐標分別為(,)、(,),利用兩點間的距離公式可求出線段AB的長度,由P為反比例函數(shù)y=上一點可得出x0與y0的關(guān)系式,利用兩點間的距離公式可得出PF1、PF2的長,代入d=|PF1-PF2|即可得到x0的表達式,再根據(jù)x0的取值范圍即可求出d的長,進而得出結(jié)論.
解:解由和y=x組成的方程組可得A、B兩點的坐標分別為,(,)、(-,-),線段AB的長度=4
∵點P(x0,y0)是反比例函數(shù)圖象上一點,
∴y0=
∴PF1===||,
PF2===||,
∴d=|PF1﹣PF2|=,
當x0<0時,d=4;x0>0時,d=4.
∴無論點P的位置如何,線段AB的長度與d一定相等.
∴到兩個定點的距離之差(取正值)是定值的點的集合(軌跡)是雙曲線.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AB=AD,對角線BD為⊙O的直徑,AC與BD交于點E.點F為CD延長線上,且DF=BC.
(1)證明:AC=AF;
(2)若AD=2,AF=,求AE的長;
(3)若EG∥CF交AF于點G,連接DG.證明:DG為⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是甲、乙兩校男、女生人數(shù)的統(tǒng)計圖.
根據(jù)統(tǒng)計圖回答問題:
(1)若甲校男生人數(shù)為273人,求該校女生人數(shù);
(2)方方同學說:“因為甲校女生人數(shù)占全校人數(shù)的40%,而乙校女生人數(shù)占全校人數(shù)的55%,所以甲校的女生人數(shù)比乙校女生人數(shù)少”,你認為方方同學說的對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c交x軸分別于點A(﹣3,0),B(1,0),交y軸正半軸于點D,拋物線頂點為C.下列結(jié)論
①2a﹣b=0;
②a+b+c=0;
③當m≠﹣1時,a﹣b>am2+bm;
④當△ABC是等腰直角三角形時,a=;
⑤若D(0,3),則拋物線的對稱軸直線x=﹣1上的動點P與B、D兩點圍成的△PBD周長最小值為3,其中,正確的個數(shù)為( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=ax2+bx+3(a≠0)過A(4,4),B(2,m)兩點,點B到拋物線對稱軸的距離記為d,滿足0<d≤1,則實數(shù)m的取值范圍是( 。
A. m≤2或m≥3 B. m≤3或m≥4 C. 2<m<3 D. 3<m<4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一條筆直的公路上有A、B兩地,甲、乙兩輛貨車都要從A地送貨到B地,甲車先從A地出發(fā)勻速行駛,3小時后,乙車從A地出發(fā),并沿同一路線勻速行駛,當乙車到達B地后立刻按原速返回,在返回途中第二次與甲車相遇。甲車出發(fā)的時間記為t (小時),兩車之間的距離記為y(千米),y與t的函數(shù)關(guān)系如圖所示,則乙車第二次與甲車相遇時,甲車距離A地___千米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知點A(―3,6)、B(―9,一3),以原點O為位似中心,相似比為,把△ABO縮小,則點A的對應點A′的坐標是( )
A.(―1,2)
B.(―9,18)
C.(―9,18)或(9,―18)
D.(―1,2)或(1,―2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知一次函數(shù)y=ax+b的圖象上有兩點A、B,它們的橫坐標分別是3,-1,若二次函數(shù)y=x2的圖象經(jīng)過A、B兩點.
(1)請求出一次函數(shù)的表達式;
(2)設(shè)二次函數(shù)的頂點為C,求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,AB=6,AC=3,∠BAC=60°,為⊙O上的一段弧,且∠BOC=60°,分別在、線段AB和AC上選取點P、E、F,則PE+EF+FP的最小值為__________
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com