科目: 來源: 題型:
【題目】已知:在△ABC中,∠ABC=90°,AB=BC,點D為線段BC上一動點(點D不與點B、C重合),點B關于直線AD的對稱點為E,作射線DE,過點C作BC的垂線,交射線DE于點F,連接AE.
(1)依題意補全圖形;
(2)AE與DF的位置關系是 ;
(3)連接AF,小昊通過觀察、實驗,提出猜想:發(fā)現(xiàn)點D 在運動變化的過程中,∠DAF的度數(shù)始終保持不變,小昊把這個猜想與同學們進行了交流,經(jīng)過測量,小昊猜想∠DAF= °,通過討論,形成了證明該猜想的兩種想法:
想法1:過點A作AG⊥CF于點G,構造正方形ABCG,然后可證△AFG≌△AFE……
想法2:過點B作BG∥AF,交直線FC于點G,構造□ABGF,然后可證△AFE≌△BGC……
請你參考上面的想法,幫助小昊完成證明(一種方法即可).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:如圖,⊙O的半徑為r,在射線OM上任取一點P(不與點O重合),如果射線OM上的點P',滿足OP·OP'=r2,則稱點P'為點P關于⊙O的反演點.
在平面直角坐標系xOy中,已知⊙O的半徑為2.
(1)已知點A (4,0),求點A關于⊙O的反演點A'的坐標;
(2)若點B關于⊙O的反演點B'恰好為直線與直線x=4的交點,求點B的坐標;
(3)若點C為直線上一動點,且點C關于⊙O的反演點C'在⊙O的內(nèi)部,求點C的橫坐標m的范圍;
(4)若點D為直線x=4上一動點,直接寫出點D關于⊙O的反演點D'的橫坐標t的范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】對于題目:“如圖1,平面上,正方形內(nèi)有一長為12 、寬為6 的矩形,它可以在正方形的內(nèi)部及邊界通過移轉(zhuǎn)(即平移或旋轉(zhuǎn))的方式,自由地從橫放移轉(zhuǎn)到豎放,求正方形邊長的最小整數(shù).”甲、乙、丙作了自認為邊長最小的正方形,先求出該邊長,再取最小整數(shù).
甲:如圖2,思路是當為矩形對角線長時就可移轉(zhuǎn)過去;結(jié)果取n=14.
乙:如圖3,思路是當為矩形外接圓直徑長時就可移轉(zhuǎn)過去;結(jié)果取n=14.
丙:如圖4,思路是當為矩形的長與寬之和的倍時就可移轉(zhuǎn)過去;結(jié)果取n=13.
甲、乙、丙的思路和結(jié)果均正確的是___________ .
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,拋物線與直線AB交于點A(-1,0),B(4,).點D是拋物線A,B兩點間部分上的一個動點(不與點A,B重合),直線CD與y軸平行,交直線AB于點C,連接AD,BD.
(1)求拋物線的解析式;
(2)設點D的橫坐標為m,則用m的代數(shù)式表示線段DC的長;
(3)在(2)的條件下,若△ADB的面積為S,求S關于m的函數(shù)關系式,并求出當S取最大值時的點C的坐標;
(4)當點D為拋物線的頂點時,若點P是拋物線上的動點,點Q是直線AB上的動點,判斷有幾個位置能使以點P,Q,C,D為頂點的四邊形為平行四邊形,直接寫出相應的點Q的坐標.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知:等邊△ABC的邊長為4,點P在線段AB上,點D在線段AC上,且△PDE為等邊三角形,當點P與點B重合時(如圖1),AD+AE的值為 ;
[類比探究]在上面的問題中,如果把點P沿BA方向移動,使PB=1,其余條件不變(如圖2),AD+AE的值是多少?請寫出你的計算過程;
[拓展遷移]如圖3,△ABC中,AB=BC,∠ABC=a,點P在線段BA延長線上,點D在線段CA延長線上,在△PDE中,PD=PE,∠DPE=a,設AP=m,則線段AD、AE有怎樣的等量關系?請用含m,a的式子直接寫出你的結(jié)論.
查看答案和解析>>
科目: 來源: 題型:
【題目】“六一”期間,小張購進100只兩種型號的文具進行銷售,其進價和售價之間的關系如下表:
(1)小張如何進貨,使進貨款恰好為1300元?
(2)要使銷售文具所獲利潤最大,且所獲利潤不超過進貨價格的40%,請你幫小張設計一個進貨方案,并求出其所獲利潤的最大值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,函數(shù)與的圖像在第一象限內(nèi)交于點A,在求點A坐標時,小明由于看錯了k,解得A(1 , 3);小華由于看錯了m,解得A(1, ).
(1)求這兩個函數(shù)的關系式及點A的坐標;
(2)根據(jù)函數(shù)圖象回答:若,請直接寫出x的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學小組的兩位同學準備測量兩幢教學樓之間的距離,如圖,兩幢教學樓AB和CD之間有一景觀池(AB⊥BD,CD⊥BD),一同學在A點測得池中噴泉處E點的俯角為42°,另一同學在C點測得E點的俯角為45°(點B,E,D在同一直線上),兩個同學已經(jīng)在學校資料室查出樓高AB=15m,CD=20m,求兩幢教學樓之間的距離BD.
(結(jié)果精確到0.1m,參考數(shù)據(jù):sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,AB是半圓O的直徑,射線AM⊥AB,點P在AM上,連接OP交半圓O于點D,PC切半圓O于點C,連接BC,OC.
(1)求證:△OAP≌△OCP;
(2)若半圓O的半徑等于2,填空:
①當AP= 時,四邊形OAPC是正方形;
②當AP= 時,四邊形BODC是菱形.
查看答案和解析>>
科目: 來源: 題型:
【題目】小明隨機調(diào)查了若干市民租用公共自行車的騎車時間t(單位:分),將獲得的數(shù)據(jù)分成四組,繪制了如下統(tǒng)計圖。請根據(jù)圖中信息,解答下列問題:
[Failed to download image : http://qbm-images.oss-cn-hangzhou.aliyuncs.com/QBM/2018/4/12/1922393511583744/1923977001213952/STEM/d5900c7cb9b84a9a89aefef7d82bcf93.png]
(1)這次被調(diào)查的總?cè)藬?shù)是多少?
(2)試求表示A組的扇形圓心角的度數(shù),并補全條形統(tǒng)計圖;
(3)如果騎自行車的平均速度為12km/h,請估算,在租用公共自行車的市民中,騎車路程不超過6km的人數(shù)所占的百分比。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com