科目: 來源: 題型:
【題目】生活與數(shù)學(xué)
(1)瑩瑩在日歷上圈出三個數(shù),呈大寫的“一”字,這三個數(shù)的和是中間數(shù)的 倍,瑩瑩又在日歷上圈出5個數(shù),呈“十”字框形,它們的和是50,則中間的數(shù)是 :
(2)小麗同學(xué)也在某月的日歷上圈出如圖所示“七”字形,發(fā)現(xiàn)這八個數(shù)的和是125,那么這八個數(shù)中最大數(shù)為 :
(3)在第(2)題中這八個數(shù)之和 為101(填“能”或“不能”).
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,小巷左石兩側(cè)是豎直的墻,一架梯子斜靠在左墻時,梯子底端到左墻角的距離BC為0.7米,梯子頂端到地面的距離AC為2.4米,如果保持梯子底端位置不動,將梯子斜靠在右墻時,梯子頂端到地面的距離A′D為1.5米,求小巷有多寬.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)學(xué)課上小明用一副三角板進行如下操作:把一副三角板中兩個直角的頂點重合,一個三角板固定不動,另一個三角板繞著重合的頂點旋轉(zhuǎn)(兩個三角板始終有重合部分).
(1)當(dāng)旋轉(zhuǎn)到如圖所示的位置時,量出∠α=25°,通過計算得出∠AOD=∠BOC= ;
(2)通過幾次操作小明發(fā)現(xiàn),∠α≠25°時.∠AOD=∠BOC仍然成立,請你幫他完成下面的說理過程.
理由:因為∠AOC=∠BOD= ;
所以,根據(jù)等式的基本性質(zhì)∠ ﹣∠COD=∠BOD﹣∠ ;
即∠AOD=∠ .
(3)小瑩還發(fā)現(xiàn)在旋轉(zhuǎn)過程中∠AOB和∠DOC之間存在一個不變的數(shù)量關(guān)系,請你用等式表示這個數(shù)量關(guān)系 .
查看答案和解析>>
科目: 來源: 題型:
【題目】已知圓O的直徑AB=12,點C是圓上一點,且∠ABC=30°,點P是弦BC上一動點,過點P作PD⊥OP交圓O于點D.
(1)如圖1,當(dāng)PD∥AB 時,求PD的長;
(2)如圖2,當(dāng)BP平分∠OPD時,求PC的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,點B,C為⊙O上一動點,過點B作BE∥AC,交⊙O于點E,點D為射線BC上一動點,且AC平分∠BAD,連接CE.
(1)求證:AD∥EC;
(2)連接EA,若BC=6,則當(dāng)CD= 時,四邊形EBCA是矩形.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,半徑為2的圓被分成甲、乙、丙三個扇形,它們的面積之比為3:2:5.請回答下列問題.
(1)扇形甲的圓心角為 ;
(2)剪下扇形丙恰好能圍成一個幾何體的側(cè)面,這個幾何體的名稱是 .
(3)現(xiàn)有半徑分別為1,2,3的三個圓形紙片,從中選擇一個恰好和扇形丙組成(2)中的幾何體(不考慮接縫的大。筮@個幾何體的表面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位長度,再向右平移1個單位長度,分別得到點A,B的對應(yīng)點C,D.連接AC,BD.
(1)寫出點C,D的坐標(biāo)及四邊形ABDC的面積.
(2)在y軸上是否存在一點P,連接PA,PB,使S三角形PAB=S四邊形ABDC?若存在,求出點P的坐標(biāo),若不存在,試說明理由;
(3)點Q是線段BD上的動點,連接QC,QO,當(dāng)點Q在BD上移動時(不與B,D重合),給出下列結(jié)論:①的值不變;②的值不變,其中有且只有一個正確,請你找出這個結(jié)論并求值.
查看答案和解析>>
科目: 來源: 題型:
【題目】我國南宋著名數(shù)學(xué)家秦九韶的著作《數(shù)書九章》里記載著這樣一道題:“問有沙田一塊,有三斜,其中小斜五里,中斜十二里,大斜十三里,欲知為田幾何?”這道題的大意是:有一塊三角形沙田,三條邊長分別為5里;12里;13里,問這塊沙田面積有多大?題中的1里=0.5千米,則該沙田的面積為( )
A.3平方千米B.7.5平方千米C.15平方千米D.30平方千米
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,△ABC中,∠BAC=60°,∠ABC=45°,AB=4,D是線段BC上的一個動點,以AD為直徑作⊙O分別交AB、AC于E、F,連結(jié)EF,則線段EF長度的最小值為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com