科目: 來源: 題型:
【題目】現(xiàn)有A,B兩組卡片共5張,A中三張分別寫有數(shù)字2,4,6,B中兩張分別寫有3,5,它們除數(shù)字外完全一樣.
(1)隨機地從A中抽取一張,求抽到數(shù)字為2的概率;
(2)隨機地分別從A、B中各抽取一張,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果.現(xiàn)制定這樣一個游戲規(guī)則:若所選出的兩數(shù)之積為3的倍數(shù),則甲獲勝;否則乙獲勝.請問這樣的游戲規(guī)則對甲乙雙方公平嗎?為什么?若不公平,你認(rèn)為怎樣制定游戲規(guī)則,對甲乙雙方才公平?
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,D是BC邊上的一點,E是AD的中點,過A點作BC的平行線交CE的延長線于點F,且AF=BD,連接BF.
(1)BD與CD有什么數(shù)量關(guān)系,并說明理由;
(2)當(dāng)△ABC滿足什么條件時,四邊形AFBD是矩形?并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,直線l1的解析式為y=﹣x+2,l1與x軸交于點B,直線l2經(jīng)過點D(0,5),與直線l1交于點C(﹣1,m),且與x軸交于點A,
(1)求點C的坐標(biāo)及直線l2的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,正方形ABCD中,點E、F分別在BC、CD上,△AEF是等邊三角形,連接AC交EF于G,下列結(jié)論:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正確結(jié)論有( 。﹤.
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目: 來源: 題型:
【題目】某星期天下午,小強和同學(xué)小穎相約在某公共汽車站一起乘車回學(xué)校,小強從家出發(fā)先步行到車站,等小穎到了后兩人一起乘公共汽車回學(xué)校,圖中折線表示小強離開家的路程y(公里)和所用時間x(分)之間的函數(shù)關(guān)系,下列說法中錯誤的是( 。
A. 小強乘公共汽車用了20分鐘 B. 小強在公共汽車站等小穎用了10分鐘
C. 公共汽車的平均速度是30公里/小時 D. 小強從家到公共汽車站步行了2公里
查看答案和解析>>
科目: 來源: 題型:
【題目】一果農(nóng)販賣的西紅柿,其重量與價錢成一次函數(shù)關(guān)系.小華向果農(nóng)買一竹籃的西紅柿,含竹籃稱得總重量為15公斤,付西紅柿的錢26元,若再加買0.5公斤的西紅柿,需多付1元,則空竹籃的重量為多少?( 。
A. 1.5 B. 2 C. 2.5 D. 3
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在△ABC中,以AB為直徑的⊙O分別交AC,BC于點D,E,點F在AC的延長線上,且AC=CF,∠CBF=∠CFB.
(1)求證:直線BF是⊙O的切線;
(2)若點D,點E分別是弧AB的三等分點,當(dāng)AD=5時,求BF的長和扇形DOE的面積.
查看答案和解析>>
科目: 來源: 題型:
【題目】某中學(xué)對本校500名畢業(yè)生中考體育測試情況進(jìn)行調(diào)查,根據(jù)男生及女生身體機能類選考坐位體前屈測試成績整理,繪制成如下不完整的統(tǒng)計圖(圖①,圖②)
請根據(jù)統(tǒng)計圖提供的信息,回答下列問題:
(1)該校畢業(yè)生中男生有人,女生有人;
(2)扇形統(tǒng)計圖中a= , b= , 并補全條形統(tǒng)計圖;
(3)求圖①中“8分a%”所對應(yīng)的扇形圓心角的度數(shù);
(4)若該校畢業(yè)生中隨機抽取一名學(xué)生,則這名男生身體機能類選考坐位體前屈測試成績?yōu)?0分的概率是多少?
查看答案和解析>>
科目: 來源: 題型:
【題目】商家常將兩種糖混合成“什錦糖”出售.對“什錦糖”的定價用以下方法確定:
若A種糖的單價為a元/千克,B種糖的單價為b元/千克(a≠b),則m千克的A種糖與n千克的B種糖混合而成的“什錦糖”單價為元.
(1)當(dāng)a=20,b=30時,
①將10千克的A種糖與15千克的B種糖混合而成的“什錦糖”單價為多少?
②在①的基礎(chǔ)上,若要將“什錦糖”單價提高2元,則需增加B種糖多少千克?
(2)若現(xiàn)有兩種“什錦糖”:一種是由10千克的A種糖和10千克的B種糖混合而成,另一種是由100元價值的A種糖和100元價值的B種糖混合而成,則這兩種“什錦糖”的單價哪一種更大?
查看答案和解析>>
科目: 來源: 題型:
【題目】(原題)已知直線AB∥CD,點P為平行線AB,CD之間的一點.如圖1,若∠ABP=50°,∠CDP=60°,BE平分∠ABP,DE平分∠CDP,求∠BED的度數(shù).
(探究)如圖2,當(dāng)點P在直線AB的上方時,若∠ABP=α,∠CDP=β,∠ABP和∠CDP的平分線交于點E1,∠ABE1與∠CDE1的角平分線交于點E2,∠ABE2與∠CDE2的角平分線交于點E3,…以此類推,求∠En的度數(shù).
(變式)如圖3,∠ABP的角平分線的反向延長線和∠CDP的補角的角平分線交于點E,試猜想∠P與∠E的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com