相關(guān)習(xí)題
 0  120617  120625  120631  120635  120641  120643  120647  120653  120655  120661  120667  120671  120673  120677  120683  120685  120691  120695  120697  120701  120703  120707  120709  120711  120712  120713  120715  120716  120717  120719  120721  120725  120727  120731  120733  120737  120743  120745  120751  120755  120757  120761  120767  120773  120775  120781  120785  120787  120793  120797  120803  120811  366461 

科目: 來源:2011-2012年浙江省蕭山城區(qū)九年級(jí)12月月考數(shù)學(xué)卷 題型:解答題

(12分)已知拋物線yax2bxcx軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,其中點(diǎn)Bx軸的正半軸上,點(diǎn)Cy軸的正半軸上,線段OB、OC的長(OB<OC)是方程x2-10x+16=0的兩個(gè)根,且拋物線的對(duì)稱軸是直線x=-2.
【小題1】(1)求A、BC三點(diǎn)的坐標(biāo);
【小題2】(2)求此拋物線的表達(dá)式;
【小題3】(3)連接AC、BC,若點(diǎn)E是線段AB上的一個(gè)動(dòng)點(diǎn)(與點(diǎn)A、點(diǎn)B不重合),過點(diǎn)EEFACBC于點(diǎn)F,連接CE,設(shè)AE的長為m,△CEF的面積為S,求Sm之間的函數(shù)關(guān)系式,并寫出自變量m的取值范圍;
【小題4】(4)在(3)的基礎(chǔ)上試說明S是否存在最大值,若存在,請(qǐng)求出S的最大值,并求出此時(shí)點(diǎn)E的坐標(biāo),判斷此時(shí)△BCE的形狀;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目: 來源:2011-2012年浙江省蕭山城區(qū)九年級(jí)12月月考數(shù)學(xué)卷 題型:解答題

(10分)有一種可食用的野生菌,上市時(shí),外商李經(jīng)理按市場(chǎng)價(jià)格30元/千克收購了這種野生菌1000千克存放入冷庫中,據(jù)預(yù)測(cè),該野生菌的市場(chǎng)價(jià)格將以每天每千克上漲1元;但冷凍存放這批野生菌時(shí)每天需要支出各種費(fèi)用合計(jì)310元,而且這類野生菌在冷庫中最多保存160天,同時(shí),平均每天有3千克的野生菌損壞不能出售。
【小題1】(1)設(shè)天后每千克該野生菌的市場(chǎng)價(jià)格為元,試寫出之間的函數(shù)關(guān)系式;
【小題2】(2)若存放天后,將這批野生菌一次性出售,設(shè)這批野生菌的銷售總額為元,試寫出之間的函數(shù)關(guān)系式;
【小題3】(3)李經(jīng)理將這批野生菌存放多少天后出售可獲得最大利潤元?(利潤=銷售總額-收購成本-各種費(fèi)用)

查看答案和解析>>

科目: 來源:2011-2012學(xué)年湖南省九年級(jí)上學(xué)期期末數(shù)學(xué)試卷 題型:解答題

如圖,拋物線與x軸交于A(-1,0)、B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,-3),設(shè)拋物線的頂點(diǎn)為D

【小題1】求該拋物線的解析式與頂點(diǎn)D的坐標(biāo)
【小題2】以B、C、D為頂點(diǎn)的三角形是直角三角形嗎?為什么?
【小題3】探究軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCD相似?若存在,直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由

查看答案和解析>>

科目: 來源:2012屆泰州市九年級(jí)期末模擬數(shù)學(xué)卷 題型:解答題

已知直角梯形紙片OABC在平面直角坐標(biāo)系中的位置如圖①所示,四
個(gè)頂點(diǎn)的坐標(biāo)分別為O(0,0),A(10,0),B(8,2),C(0,2),點(diǎn)P在線段OA上(不與O、A重合),將紙片折疊,使點(diǎn)A落在射線AB上(記為點(diǎn)A’),折痕PQ與射線AB交于點(diǎn)Q,設(shè)OP=x,折疊后紙片重疊部分的面積為y.(圖②供探索用)
【小題1】求∠OAB的度數(shù);
【小題2】求y與x的函數(shù)關(guān)系式,并寫出對(duì)應(yīng)的x的取值范圍;
【小題3】y存在最大值嗎?若存在,求出這個(gè)最大值,并求此時(shí)x的值;若不存在,說明理由.

查看答案和解析>>

科目: 來源:2012屆泰州市九年級(jí)期末模擬數(shù)學(xué)卷 題型:解答題

)圖①中是一座鋼管混凝土系桿拱橋,橋的拱肋ACB可視為拋物線的一部分(如圖②),橋面(視為水平的)與拱肋用垂直于橋面的系桿連接,測(cè)得拱肋
的跨度AB為200米,與AB中點(diǎn)O相距20米處有一高度為48米的系桿.
【小題1】求正中間系桿OC的長度;
【小題2】若相鄰系桿之間的間距均為5米(不考慮系桿的粗細(xì)),則是否存在一根系桿的長度恰好是OC長度的一半?請(qǐng)說明理由.

查看答案和解析>>

科目: 來源:2012屆泰州市九年級(jí)期末模擬數(shù)學(xué)卷 題型:解答題

已知二次函數(shù)y=ax2+2x+c,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:

x
……
-2
-1
0
1
2
……
y
……
-5
0
3
4
3
……
【小題1】求這個(gè)二次函數(shù)的關(guān)系式;
【小題2】請(qǐng)判斷函數(shù)有最大值還是最小值,并寫出此時(shí)x的值與y的值;
【小題3】若y≥0,則x的取值范圍是_______.
【小題4】若A(n,y1)、B(n+1,y2)兩點(diǎn)均在該函數(shù)的圖象上,試比較y1與y2大。

查看答案和解析>>

科目: 來源:2011-2012年北京市第六十六中學(xué)九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿分7分)如圖,平面直角坐標(biāo)系中,點(diǎn)AB、Cx軸上,點(diǎn)D、Ey軸上,OA=OD=2,OC=OE=4,2OB=OD,直線AD與經(jīng)過B、EC三點(diǎn)的拋物線交于F、G兩點(diǎn),與其對(duì)稱軸交于M.點(diǎn)P為線段FG上一個(gè)動(dòng)點(diǎn)(與F、G不重合),
PQy軸與拋物線交于點(diǎn)Q.

 
【小題1】 (1)求經(jīng)過BE、C三點(diǎn)的拋物線的解析式;
【小題2】  (2)是否存在點(diǎn)P,使得以P、QM為頂點(diǎn)的三角形與△AOD相似?若存在,求出滿足條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;

查看答案和解析>>

科目: 來源:2011-2012年北京市第六十六中學(xué)九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿分6分)在直角坐標(biāo)平面中,O為坐標(biāo)原點(diǎn),二次函數(shù)的圖象與x軸的負(fù)半軸相交于點(diǎn)C(如圖),點(diǎn)C的坐標(biāo)為(0,-3),且BO=CO
【小題1】(1)求這個(gè)二次函數(shù)的解析式;
【小題2】(2)設(shè)這個(gè)二次函數(shù)的圖象的頂點(diǎn)為M,求AM 的長.

查看答案和解析>>

科目: 來源:2011-2012年北京市第六十六中學(xué)九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿分6分)某食品店零售店一種面包,統(tǒng)計(jì)銷售情況發(fā)現(xiàn),當(dāng)這種面包的單價(jià)定為7角時(shí),每天賣出160個(gè).在此基礎(chǔ)上,這種面包的單價(jià)每提高1角時(shí),該零售店每天就會(huì)少賣出20個(gè).考慮了所有因素后該零售店每個(gè)面包的成本是5角.設(shè)這種面包的單價(jià)為x(角),零售店每天銷售這種面包所獲得的利潤為y(角).
【小題1】(1)用含x的代數(shù)式分別表示出每個(gè)面包的利潤與賣出的面包個(gè)數(shù);
【小題2】(2)求y與x之間的函數(shù)關(guān)系式及定義域;
【小題3】(3)當(dāng)面包單價(jià)定為多少時(shí),該零售店每天銷售這種面包獲得的利潤最大?最大利潤為多少?

查看答案和解析>>

科目: 來源:2011-2012年北京市第六十六中學(xué)九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:解答題

(本小題滿分5分)已知二次函數(shù)y= x2 +4x+3.
【小題1】(1)用配方法將y= x2 +4x+3化成y=a (x-h) 2 +k的形式,寫出函數(shù)的最值;
【小題2】(2)在平面直角坐標(biāo)系中,畫出這個(gè)二次函數(shù)的圖象;
【小題3】(3)寫出當(dāng)x為何值時(shí),y>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案