【題目】已知關(guān)于的方程.
求證:不論為任何實(shí)數(shù),此方程總有實(shí)數(shù)根;
若方程有兩個(gè)不同的整數(shù)根,且為正整數(shù),求的值.
【答案】(1)見(jiàn)解析;(2)m=1.
【解析】
(1)根據(jù)方程的系數(shù)結(jié)合根的判別式,即可得出△=(3m-1)2≥0,由此即可證出:不論m為任何實(shí)數(shù),此方程總有實(shí)數(shù)根;
(2)利用分解因式法解一元二次方程,可得出方程的解,根據(jù)該方程有兩個(gè)不等的整數(shù)根結(jié)合m為正整數(shù),即可求出m的值.
(1)∵△=(3m+1)2-12m=9m2-6m+1=(3m-1)2.
∴不論m為任何實(shí)數(shù)時(shí)總有(3m-1)2≥0.
∴此時(shí)方程有實(shí)數(shù)根.
(2)∵mx2+(3m+1)x+3=0.
解得 x1=-3,x2=.
∵方程mx2+(3m+1)x+3=0有兩個(gè)不等的整數(shù)根,且m為正整數(shù),
∴m=1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)要在操場(chǎng)的一塊長(zhǎng)方形土地上進(jìn)行綠化,已知這塊長(zhǎng)方形土地的長(zhǎng)為5m,寬為4m.
(1)求該長(zhǎng)方形土地的面積(精確到0.1 m2);
(2)如果綠化該長(zhǎng)方形土地每平方米的造價(jià)為180元,那么綠化該長(zhǎng)方形土地所需資金約為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】用“<”“>”或“=”號(hào)填空:
(1)﹣_____﹣;
(2)﹣(﹣0.01)_____ (﹣)2;
(3)3.9950(精確到0.01)_____3.999.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】國(guó)家推行“節(jié)能減排,低碳經(jīng)濟(jì)”政策后,某企業(yè)推出一種“CNG”改燒汽油為天然氣的裝置,每輛車(chē)改裝費(fèi)為b元,據(jù)市場(chǎng)調(diào)查知:每輛車(chē)改裝前、后的燃料費(fèi)(含改裝費(fèi))y0,y1(元)與正常運(yùn)營(yíng)時(shí)間x(天)之間分別滿(mǎn)足關(guān)系式:y0=ax,y1=b+50x,圖象如圖所示.
(1)每輛車(chē)改裝前每天的燃料費(fèi)a= 元,每輛車(chē)的改裝費(fèi)b= 元,正常運(yùn)營(yíng)時(shí)間 天后,就可以從節(jié)省的燃料費(fèi)中收回改裝成本;
(2)某出租汽車(chē)公司一次性改裝了100輛出租車(chē),因而正常運(yùn)行多少天后共節(jié)省燃料費(fèi)40萬(wàn)元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】溫度的度量有兩種基本單位:攝氏溫度(℃),華氏溫度(℉).在溫度計(jì)上,攝氏溫度x與華氏溫度y有如下表所示的對(duì)應(yīng)關(guān)系:
x/℃ | … | -10 | 0 | 10 | 20 | … |
y/℉ | … | 14 | 32 | 50 | 68 | … |
按下列步驟確定y與x之間的函數(shù)關(guān)系式.
(1)在平面直角坐標(biāo)系中描點(diǎn)、連線(xiàn),畫(huà)出圖象;
(2)猜想能表示y與x之間關(guān)系的函數(shù)類(lèi)型;
(3)確定y與x之間的函數(shù)關(guān)系式,并驗(yàn)證你的想法.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A(-3,0),點(diǎn)B在軸上,直線(xiàn)y=-2x+a經(jīng)過(guò)點(diǎn)B與軸交于點(diǎn)(0, 6),直線(xiàn)AD與直線(xiàn)y=-2x+a相交于點(diǎn)D(-1,n).
(1)求直線(xiàn)AD的表達(dá)式;
(2)點(diǎn)M是直線(xiàn)y=-2x+a上的一點(diǎn)(不與點(diǎn)B重合),且點(diǎn)M的橫坐標(biāo)為m,求△ABM的面積S與m之間的關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,點(diǎn)M為直線(xiàn)AB上一動(dòng)點(diǎn), 都是等邊三角形,連接BN
求證: ;
分別寫(xiě)出點(diǎn)M在如圖2和圖3所示位置時(shí),線(xiàn)段AB、BM、BN三者之間的數(shù)量關(guān)系不需證明;
如圖4,當(dāng)時(shí),證明: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,甲、乙兩盞路燈桿相距20米,一天晚上,當(dāng)小明從燈甲底部向燈乙底部直行16米時(shí),發(fā)現(xiàn)自己的身影頂部正好接觸到路燈乙的底部.已知小明的身高為1.6米,那么路燈甲的高為( )
A.7米
B.8米
C.9米
D.10米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AE平分∠BAD交BC于點(diǎn)E.
(1)作CF平分∠BCD交AD于點(diǎn)F(用尺規(guī)作圖,保留作圖痕跡,不要求寫(xiě)作法);
(2)在(1)的條件下,求證:△ABE≌△CDF.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com