【題目】如圖,某地有一座圓弧形拱橋,
(1)如圖1,請用尺規(guī)作出圓弧所在圓的圓心O;
(2)如圖2,過點O作OC⊥AB于點D,交圓弧于點C,CD=2.4 m.橋下水面寬度AB為7.2 m,現(xiàn)有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經(jīng)過拱橋,請通過計算說明此貨船能否順利通過這座拱橋.
【答案】(1)詳見解析;(2)此貨船能順利通過這座拱橋.
【解析】
(1)根據(jù)垂徑定理,作弦AH和HB,然后作它們的垂直平分線,則兩垂直平分線的交點為圓心O.
(2) 連接ON,OB,通過求距離水面2米高處即ED長為2時,橋有多寬即MN的長與貨船頂部的3米做比較來判定貨船能否通過(MN大于3則能通過,MN小于等于3則不能通過).先根據(jù)半弦,半徑和弦心距構(gòu)造直角三角形求出半徑的長,再根據(jù)Rt△OEN中勾股定理求出EN的長,從而求得MN的長.
解:(1)
(2)如圖,連接ON,OB.
∵OC⊥AB,∴D為AB的中點.
∵AB=7.2 m,
∴BD=AB=3.6 m.
設(shè)OB=OC=ON=r m,則OD=(r-2.4)m.
在Rt△BOD中,根據(jù)勾股定理,得r2=(r-2.4)2+3.62,解得r=3.9,
∴OD=r-2.4=1.5(m).
∵船寬3 m,根據(jù)垂徑定理,得EN=DF=1.5 m,
∴OE===3.6(m),
∴FN=DE=OE-OD=2.1m>2 m,
∴此貨船能順利通過這座拱橋.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2<﹣1,則y1>y2,⑤abc>0.其中正確結(jié)論的個數(shù)是( 。
A. 5個 B. 4個 C. 3個 D. 2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:已知△ABC中,AB=5,BC=3,AC=4,PQ∥AB,P點在AC上(與A、C不重合),Q在BC上.
(1)當(dāng)△PQC的面積與四邊形PABQ的面積相等時,求CP的長;
(2)當(dāng)△PQC的周長與四邊形PABQ的周長相等時,求CP的長;
(3)試問:在AB上是否存在一點M,使得△PQM為等腰直角三角形?若不存在,請簡要說明理由;若存在,請求出PQ的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對的圓周角是直角,即可得 利用勾股定理即可求得的長,又由OE∥AB,證得根據(jù)相似三角形的對應(yīng)邊成比例,即可求得的長,然后利用三角函數(shù)的知識,求得與的長,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關(guān)于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是矩形,ADEF是正方形,點A,D在x軸的正半軸,點C在y軸的正半軸上,點F在AB上,點B,E是雙曲線y1=與直線y2=mx+n的交點,OA=2,OC=6.
(1)求k的值;
(2)求正方形ADEF的邊長;
(3)直接寫出不等式>mx+n的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,MN為⊙O的直徑,ME是⊙O的弦,MD垂直于過點E的直線DE,垂足為點D,且ME平分∠DMN.
求證:(1)DE是⊙O的切線;
(2)ME2=MDMN.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=,O是BC邊的中點,點E是正方形內(nèi)一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉(zhuǎn)90°得DF,連接AE,CF.
(1)若A,E,O三點共線,求CF的長;
(2)求△CDF的面積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AD平分∠BAC交BC于點D.點E、F分別在邊AB、AC上,且BE=AF,FG∥AB交線段AD于點G,連接BG、EF.
(1)求證:四邊形BGFE是平行四邊形;
(2)若△ABG∽△AGF,AB=10,AG=6,求線段BE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD,將邊CD繞點C順時針旋轉(zhuǎn)60°,得到線段CE,連接DE,AE,BD交于點F.
(1)求∠AFB的度數(shù);
(2)求證:BF=EF;
(3)連接CF,直接用等式表示線段AB,CF,EF的數(shù)量關(guān)系.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com