【題目】拋物線y=ax2+bx+ca≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結論:①4ac﹣b202a﹣b=0;a+b+c0④點Mx1,y1)、Nx2,y2)在拋物線上,若x1x2﹣1,則y1y2,abc0.其中正確結論的個數(shù)是( 。

A. 5 B. 4 C. 3 D. 2

【答案】B

【解析】①∵拋物線與x軸有兩個交點,

∴△=b2﹣4ac>0,

∴4ac﹣b2<0,結論①正確;

②∵拋物線的對稱軸為直線x=﹣1,

∴﹣=﹣1,

∴b=2a,即2a﹣b=0,結論②正確;

③∵拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個交點A在點(﹣3,0)和(﹣2,0)之間,

∴當x=1與x=﹣3的值相等,即當x=1時y<0,

∴a+b+c<0,結論③正確;

④∵當x<﹣1時,y隨x的增大而增大,x1<x2<﹣1,

∴y1<y2,結論④錯誤;

⑤∵拋物線開口向下,對稱軸為直線x=﹣1,與y軸交于正半軸,

∴a<0,b=2a<0,c>0,

∴abc>0,結論⑤正確,

故選B.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AC是⊙O的直徑,BC是⊙O的弦,點P是⊙O外一點,連接PA、PBAB、OP,已知PB是⊙O的切線.

(1)求證:∠PBA=C;

(2)OPBC,且OP=9,⊙O的半徑為3,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結論中:

;;方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則

其中正確的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x軸的負半軸、y軸的正半軸上,點B在第二象限.將矩形OABC繞點O順時針旋轉,使點B落在y軸上,得到矩形ODEF,BC與OD相交于點M.若經(jīng)過點M的反比例函數(shù)y=(x0)的圖象交AB于點N,的圖象交AB于點N, S矩形OABC=32,tanDOE=,,則BN的長為______________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題10分)如圖,直線y=x+m和拋物線y=+bx+c都經(jīng)過點A(1,0),

B(3,2)

(1)求m的值和拋物線的解析式;

(2)求不等式x2+bx+c>x+m的解集(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,ABAC=2,∠BAC=45°.將△ABC繞點A逆時針旋轉α度(0<α<180)得到△ADEB,C兩點的對應點分別為點DE,BD,CE所在直線交于點F

(1)當△ABC旋轉到圖1位置時,∠CAD   (用α的代數(shù)式表示),∠BFC的度數(shù)為   °;

(2)當α=45時,在圖2中畫出△ADE,并求此時點A到直線BE的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為保證車輛行駛安全,現(xiàn)在公路旁設立一檢測點A觀測行駛的汽車是否超速.如圖,檢測點A到公路的距離是24米,在公路上取兩點BC,使得∠ACB=30°,∠ABC=120°

(1)BC的長(結果保留根號);

(2)已知該路段限速為45千米/小時,若測得某汽車從BC用時2秒,這輛汽車是否超速?說明理由.(參考數(shù)據(jù):1.7,1.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)y的圖象在第一象限上的動點,連結AO并延長交另一分支于點B,以AB為邊作等邊ABC使點C落在第二象限,且邊BCx軸于點D,若ACDABD的面積之比為12,則點C的坐標為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某地有一座圓弧形拱橋,

(1)如圖1,請用尺規(guī)作出圓弧所在圓的圓心O;

(2)如圖2,過點O作OC⊥AB于點D,交圓弧于點C,CD=2.4 m.橋下水面寬度AB為7.2 m,現(xiàn)有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經(jīng)過拱橋,請通過計算說明此貨船能否順利通過這座拱橋.

查看答案和解析>>

同步練習冊答案