【題目】如圖:已知ABC中,AB5,BC3,AC4,PQAB,P點在AC上(與A、C不重合),QBC上.

1)當PQC的面積與四邊形PABQ的面積相等時,求CP的長;

2)當PQC的周長與四邊形PABQ的周長相等時,求CP的長;

3)試問:在AB上是否存在一點M,使得PQM為等腰直角三角形?若不存在,請簡要說明理由;若存在,請求出PQ的長.

【答案】1 ;(2 ;(3)存在,.

【解析】

1)由于PQAB,故PQC∽△ABC,當PQC的面積與四邊形PABQ的面積相等時,CPQCAB的面積比為12,根據(jù)相似三角形的面積比等于相似比的平方,可求出CP的長;

2)由于PQC∽△ABC,根據(jù)相似三角形的性質(zhì),可用CP表示出PQCQ的長,進而可表示出AP、BQ的長.根據(jù)CPQ和四邊形ABQP的周長相等,可將相關(guān)的各邊相加,即可求出CP的長;

3)因為不能確定哪個角是直角,故應(yīng)分類討論.

①當∠MPQ90°,且PMPQ時.因為CPQ∽△CAB,根據(jù)相似三角形邊長的比等于高的比,可求出PQ的值;

②∠PQM90°時與①相同;

③當∠PMQ90°,且PMMQ時,過MMEPQ,則MEPQ,根據(jù)相似三角形邊長的比等于高的比,可求出PQ的值.

1)∵PQAB,

∴△PQC∽△ABC,

SPQCS四邊形PABQ,

SPQCSABC12

,

CPCA2;

2)∵△PQC∽△ABC,

,

CQCP,

同理:PQCP,

lPCQCP+PQ+CQCP+CP+CP3CP,

I四邊形PABQPA+AB+BQ+PQ,

4CP+AB+3CQ+PQ

4CP+5+3CP+CP,

12CP,

12CP3CP,

CP12,

CP;

3)∵AC4AB5,BC3

∴△ABCAB邊上的高為,

①當∠MPQ90°,且PMPQ時,

∵△CPQ∽△CAB,

,

,

PQ;

②當∠PQM90°時與①相同;

③當∠PMQ90°,且PMMQ時,

MMEPQ,則MEPQ,

∴△CPQ的高為MEPQ

,

,

PQ

綜合①②③可知:點M存在,PQ的長為

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】拋物線的部分圖象如圖所示,與x軸的一個交點坐標為,拋物線的對稱軸是下列結(jié)論中:

方程有兩個不相等的實數(shù)根;拋物線與x軸的另一個交點坐標為;若點在該拋物線上,則

其中正確的有  

A. 5 B. 4 C. 3 D. 2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為保證車輛行駛安全,現(xiàn)在公路旁設(shè)立一檢測點A觀測行駛的汽車是否超速.如圖,檢測點A到公路的距離是24米,在公路上取兩點BC,使得∠ACB=30°,∠ABC=120°

(1)BC的長(結(jié)果保留根號);

(2)已知該路段限速為45千米/小時,若測得某汽車從BC用時2秒,這輛汽車是否超速?說明理由.(參考數(shù)據(jù):1.7,1.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是反比例函數(shù)y的圖象在第一象限上的動點,連結(jié)AO并延長交另一分支于點B,以AB為邊作等邊ABC使點C落在第二象限,且邊BCx軸于點D,若ACDABD的面積之比為12,則點C的坐標為__

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2,則它移動的距離AA′等于( )

A. 0.5cm B. 1cm C. 1.5cm D. 2cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點E是正方形ABCD的邊DC上一點,把△ADE順時針旋轉(zhuǎn)△ABF的位置.

(1)旋轉(zhuǎn)中心是點 ,旋轉(zhuǎn)角度是      度;

(2)若連結(jié)EF,則△AEF 三角形;并證明;

(3)若四邊形AECF的面積為25,DE=2,求AE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的弦AB4cm,點C為優(yōu)弧上的動點,且∠ACB30°.若弦DE經(jīng)過弦AC、BC的中點M、N,則DM+EN的最大值是_____cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某地有一座圓弧形拱橋,

(1)如圖1,請用尺規(guī)作出圓弧所在圓的圓心O;

(2)如圖2,過點O作OC⊥AB于點D,交圓弧于點C,CD=2.4 m.橋下水面寬度AB為7.2 m,現(xiàn)有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經(jīng)過拱橋,請通過計算說明此貨船能否順利通過這座拱橋.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.

(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)

【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據(jù)tan30°=,求出AB,進而求出OA,得出A的坐標,設(shè)過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點A的坐標為(3,3).

設(shè)反比例函數(shù)的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數(shù)的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數(shù)法求函數(shù)解析式、特殊角的三角函數(shù)值、扇形的面積及等腰三角形的性質(zhì),本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關(guān)鍵.

型】解答
結(jié)束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

同步練習冊答案