精英家教網 > 初中數學 > 題目詳情

【題目】如圖,正方形ABCD中,AB=,OBC邊的中點,點E是正方形內一動點,OE=2,連接DE,將線段DE繞點D逆時針旋轉90°DF,連接AE,CF.

(1)A,E,O三點共線,求CF的長;

(2)求△CDF的面積的最小值.

【答案】(1)CF=3;(2).

【解析】

1)由正方形的性質可得AB=BC=AD=CD=2,根據勾股定理可求AO=5,即AE=3,由旋轉的性質可得DE=DF,∠EDF=90°,根據“SAS”可證△ADE≌△CDF,可得AE=CF=3;

2)由△ADE≌△CDF,可得SADE=SCDF,當OEAD時,SADE的值最小,即可求△CDF的面積的最小值.

(1)由旋轉得:,

邊的中點,

中,

,

∵四邊形是正方形,

,

,

,

;

2)由于,所以點可以看作是以為圓心,2為半徑的半圓上運動,

過點于點

,

,

,,三點共線,最小,,

.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】為保證車輛行駛安全,現在公路旁設立一檢測點A觀測行駛的汽車是否超速.如圖,檢測點A到公路的距離是24米,在公路上取兩點B、C,使得∠ACB=30°,∠ABC=120°

(1)BC的長(結果保留根號);

(2)已知該路段限速為45千米/小時,若測得某汽車從BC用時2秒,這輛汽車是否超速?說明理由.(參考數據:1.71.4

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,⊙O的弦AB4cm,點C為優(yōu)弧上的動點,且∠ACB30°.若弦DE經過弦AC、BC的中點M、N,則DM+EN的最大值是_____cm

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,某地有一座圓弧形拱橋,

(1)如圖1,請用尺規(guī)作出圓弧所在圓的圓心O;

(2)如圖2,過點O作OC⊥AB于點D,交圓弧于點C,CD=2.4 m.橋下水面寬度AB為7.2 m,現有一艘寬3 m、船艙頂部為方形并高出水面2 m的貨船要經過拱橋,請通過計算說明此貨船能否順利通過這座拱橋.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】把(sinα)2記作sin2α,根據圖1和圖2完成下列各題.

1sin2A1+cos2A1= ,sin2A2+cos2A2= ,sin2A3+cos2A3= ;

2)觀察上述等式猜想:在RtABC中,∠C=90°,總有sin2A+cos2A= ;

3)如圖2,在RtABC中證明(2)題中的猜想:

4)已知在△ABC中,∠A+∠B=90°,且sinA=,求cosA

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,直線y1=﹣x+4,y2=x+b都與雙曲線y=交于點A(1,m),這兩條直線分別與x軸交于B,C兩點.

(1)求yx之間的函數關系式;

(2)直接寫出當x>0時,不等式x+b的解集;

(3)若點Px軸上,連接APABC的面積分成1:3兩部分,求此時點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖①所示,在ABCADE中,ABACADAE,∠BAC=∠DAE,且點B,A,D在一條直線上,連接BE,CDM,N分別為BECD的中點.

1)求證:①BECD;②AMN是等腰三角形;

2)在圖①的基礎上,將ADE繞點A按順時針方向旋轉180°,其他條件不變,得到圖②所示的圖形.請直接寫出(1)中的兩個結論是否仍然成立;

3)在(2)的條件下,請你在圖②中延長ED交線段BC于點P.求證:PBD∽△AMN

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標系中,且OB=3.

(1)若某反比例函數的圖象的一個分支恰好經過點A,求這個反比例函數的解析式;

(2)若把含30°角的直角三角板繞點O按順時針方向旋轉后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結果保留π)

【答案】(1)反比例函數的解析式為y=;(2)S陰影=6π-.

【解析】分析:(1)根據tan30°=,求出AB,進而求出OA,得出A的坐標,設過A的雙曲線的解析式是y=,把A的坐標代入求出即可;(2)求出∠AOA′,根據扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.

本題解析:

(1)在Rt△OBA中,∠AOB=30°,OB=3,

∴AB=OB·tan 30°=3.

∴點A的坐標為(3,3).

設反比例函數的解析式為y= (k≠0),

∴3,∴k=9,則這個反比例函數的解析式為y=.

(2)在Rt△OBA中,∠AOB=30°,AB=3,

sin ∠AOB=,即sin 30°=,

∴OA=6.

由題意得:∠AOC=60°,S扇形AOA′=6π.

Rt△OCD中,∠DOC=45°,OC=OB=3,

∴OD=OC·cos 45°=3×.

∴SODCOD2.

∴S陰影=S扇形AOA′-SODC=6π.

點睛:本題考查了勾股定理、待定系數法求函數解析式、特殊角的三角函數值、扇形的面積及等腰三角形的性質,本題屬于中檔題,難度不大,將不規(guī)則的圖形的面積表示成多個規(guī)則圖形的面積之和是解答本題的關鍵.

型】解答
束】
26

【題目】矩形ABCD一條邊AD=8,將矩形ABCD折疊,使得點B落在CD邊上的點P處.

(1)如圖①,已知折痕與邊BC交于點O,連接AP,OP,OA.

① 求證:△OCP∽△PDA;

② 若△OCP與△PDA的面積比為1:4,求邊AB的長.

(2)如圖②,在(1)的條件下,擦去AO和OP,連接BP.動點M在線段AP上(不與點P,A重合),動點N在線段AB的延長線上,且BN=PM,連接MN交PB于點F,作ME⊥BP于點E.試問動點M,N在移動的過程中,線段EF的長度是否發(fā)生變化?若不變,求出線段EF的長度;若變化,說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,矩形ABCD中,CEBDE,CF平分∠DCEDB交于點F

1)求證:BFBC

2)若AB4cm,AD3cm,求CF的長.

查看答案和解析>>

同步練習冊答案