【題目】我們把11,2,3,5,8,13,21,,這組數(shù)稱為斐波那契數(shù)列,為了進(jìn)一步研究,依次以這列數(shù)為半徑作90°圓弧 ,,,得到斐波那契螺旋線,然后順次連結(jié)P1P2P2P3,P3P4,,得到螺旋折線(如圖),已知點(diǎn)P1(01)P2(1,0)P3(0,-1),則該折線上的點(diǎn)P9的坐標(biāo)為(

A. (624)B. (6,25)C. (524)D. (5,25)

【答案】B

【解析】

觀察圖象,推出P9的位置,即可解決問(wèn)題.

解:由題意可知,相鄰兩點(diǎn)的橫坐標(biāo)的差分別為,-1,1,+2,-3,-5,+8,+13,-21,…,

相鄰兩點(diǎn)的縱坐標(biāo)的差分別為,-1,-1,+2,+3,-5,-8,+13,+21,…,所以P9

(-6,25).

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知直線l1∥l2,直線l3和直線l1,l2交于點(diǎn)C和D,直線l3上有一點(diǎn)P。

(1)如圖1,若P點(diǎn)在C,D之間運(yùn)動(dòng)時(shí),問(wèn)∠PAC,∠APB,∠PBD之間的關(guān)系是否發(fā)生變化,并說(shuō)明理由;

(2)若點(diǎn)P在C,D兩點(diǎn)的外側(cè)運(yùn)動(dòng)時(shí)(P點(diǎn)與點(diǎn)C,D不重合,如圖2和3),試寫(xiě)出∠PAC,∠APB,∠PBD之間的關(guān)系,并說(shuō)明理由。(圖3只寫(xiě)結(jié)論,不寫(xiě)理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系內(nèi),點(diǎn)O為坐標(biāo)原點(diǎn),點(diǎn)Ax軸負(fù)半軸上,點(diǎn)B、C分別在x軸、y軸正半軸上,且OB=2OA,OBOC=OCOA=2.

(1)求點(diǎn)C的坐標(biāo);

(2)點(diǎn)P從點(diǎn)A出發(fā)以每秒1個(gè)單位的速度沿AB向點(diǎn)B勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以每秒3個(gè)單位的速度沿BA向終點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)Q到達(dá)終點(diǎn)A時(shí),點(diǎn)P、Q均停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t(t>0)秒,線段PQ的長(zhǎng)度為y,用含t的式子表示y,并寫(xiě)出相應(yīng)的t的范圍;

(3)在(2)的條件下,過(guò)點(diǎn)P作x軸的垂線PM,PM=PQ,是否存在t值使點(diǎn)O為PQ中點(diǎn)? 若存在求t值并求出此時(shí)△CMQ的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,將紙片 ABCD 沿 PR 翻折得到三角形 PCR,恰好 CPAB,CRAD.若∠B=120°,∠D=50°,則 C=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)【問(wèn)題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點(diǎn)D為BC的中點(diǎn),以CD為一邊作正方形CDEF,點(diǎn)E恰好與點(diǎn)A重合,則線段BE與AF的數(shù)量關(guān)系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點(diǎn)C旋轉(zhuǎn),連接BE,CE,AF,線段BE與AF的數(shù)量關(guān)系有無(wú)變化?請(qǐng)僅就圖2的情形給出證明;

(3)【問(wèn)題發(fā)現(xiàn)】

當(dāng)正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點(diǎn)共線時(shí)候,直接寫(xiě)出線段AF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圓 O 的半徑為 1,過(guò)點(diǎn) A(2,0)的直線與圓 O 相切于點(diǎn) B, y 軸相交于點(diǎn) C.

(1) AB 的長(zhǎng);

(2)求直線 AB 的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:關(guān)于x的方程x2﹣(2m+1)x+2m=0

(1)求證:方程一定有兩個(gè)實(shí)數(shù)根;

(2)若方程的兩根為x1,x2,且|x1|=|x2|,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】草莓是云南多地盛產(chǎn)的一種水果,今年某水果銷售店在草莓銷售旺季,試銷售成本為每千克20元的草莓,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),也不高于每千克40元,經(jīng)試銷發(fā)現(xiàn),銷售量y(千克)與銷售單價(jià)x(元)符合一次函數(shù)關(guān)系,如圖是y與x的函數(shù)關(guān)系圖象.

(1)求y與x的函數(shù)解析式;

(2)設(shè)該水果銷售店試銷草莓獲得的利潤(rùn)為W元,求W的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AM∥BN,∠A=52°,點(diǎn)P是射線AM上的動(dòng)點(diǎn)(與點(diǎn)A不重合),BC、BD分別平分∠ABP∠PBN,分別交射線AM于點(diǎn)C,D.

(1)求∠CBD的度數(shù);

(2)當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),∠APB∠ADB之間的數(shù)量關(guān)系是否隨之發(fā)生變化?若不變化,請(qǐng)寫(xiě)出它們之間的關(guān)系,并說(shuō)明理由,若變化,請(qǐng)寫(xiě)出變化規(guī)律;

(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到使∠ACB=∠ABD時(shí),求∠ABC的度數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案