【題目】(1)【問題發(fā)現(xiàn)】

如圖1,在Rt△ABC中,AB=AC=2,∠BAC=90°,點D為BC的中點,以CD為一邊作正方形CDEF,點E恰好與點A重合,則線段BE與AF的數(shù)量關系為   

(2)【拓展研究】

在(1)的條件下,如果正方形CDEF繞點C旋轉,連接BE,CE,AF,線段BE與AF的數(shù)量關系有無變化?請僅就圖2的情形給出證明;

(3)【問題發(fā)現(xiàn)】

當正方形CDEF旋轉到B,E,F(xiàn)三點共線時候,直接寫出線段AF的長.

【答案】(1)BE=AF;(2)無變化;證明見解析;(3)當正方形CDEF旋轉到B,E,F(xiàn)三點共線時候,線段AF的長為﹣1或+1.

【解析】試題分析:(1)先利用等腰直角三角形的性質得出AD= ,再得出BE=AB=2,即可得出結論;

(2)先利用三角函數(shù)得出,同理得出,夾角相等即可得出△ACF∽△BCE,進而得出結論;

(3)分兩種情況計算,當點E在線段BF上時,如圖2,先利用勾股定理求出EF=CF=AD=,BF=,即可得出BE=,借助(2)得出的結論,當點E在線段BF的延長線上,同前一種情況一樣即可得出結論.

試題解析:(1)在Rt△ABC中,AB=AC=2,

根據(jù)勾股定理得,BC=AB=2,

點D為BC的中點,∴AD=BC=,

∵四邊形CDEF是正方形,∴AF=EF=AD=,

∵BE=AB=2,∴BE=AF,

故答案為BE=AF;

(2)無變化;

如圖2,在Rt△ABC中,AB=AC=2,

∴∠ABC=∠ACB=45°,∴sin∠ABC=,

在正方形CDEF中,∠FEC=∠FED=45°,

在Rt△CEF中,sin∠FEC=,

∵∠FCE=∠ACB=45°,∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,

∴△ACF∽△BCE,∴ =,∴BE=AF,

∴線段BE與AF的數(shù)量關系無變化;

(3)當點E在線段AF上時,如圖2,

由(1)知,CF=EF=CD=,

在Rt△BCF中,CF=,BC=2,

根據(jù)勾股定理得,BF=,∴BE=BF﹣EF=,

由(2)知,BE=AF,∴AF=﹣1,

當點E在線段BF的延長線上時,如圖3,

在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=,

在正方形CDEF中,∠FEC=∠FED=45°,

在Rt△CEF中,sin∠FEC= ,∴

∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,

∴△ACF∽△BCE,∴ =,∴BE=AF,

由(1)知,CF=EF=CD=,

在Rt△BCF中,CF=,BC=2

根據(jù)勾股定理得,BF=,∴BE=BF+EF=+,

由(2)知,BE=AF,∴AF=+1.

即:當正方形CDEF旋轉到B,E,F(xiàn)三點共線時候,線段AF的長為﹣1或+1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形OABC各個頂點的坐標分別是O0,0)、A2,0)、B4,2)、C23),過點C軸平行的直線EF與過點B軸平行的直線EH交于點E.

求四邊形OABC的面積;

在線段EH上是否存在點P,使四邊形OAPC的面積為7?若不存在,說明理由,求點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列分解因式正確的是(
A.﹣a+a3=﹣a(1+a2
B.2a﹣4b+2=2(a﹣2b)
C.a2﹣4=(a﹣2)2
D.a2﹣2a+1=(a﹣1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一塊四邊形草地ABCD,其中∠B=90°,AB=4m,BC=3m,AD=12m,CD=13cm,求這塊草地的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=4,BC=6,點D是邊BC的中點,點E是邊AB上的任意一點(點E不與點B重合),沿DE翻折△DBE使點B落在點F處,連接AF,則線段AF的長取最小值時,BF的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣,為了傳承優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學生參加的“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次大賽的成績分布情況,隨機抽取了其中200名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列不完整的統(tǒng)計圖表:

成績x/分

頻數(shù)

頻率

50≤x<60

10

0.05

 60≤x<70

30

0.15

 70≤x<80

40

n

 80≤x<90

m

0.35

 90≤x≤100

50

0.25

請根據(jù)所給信息,解答下列問題:

(1)m=   ,n=   ;

(2)請補全頻數(shù)分布直方圖;

(3)這次比賽成績的中位數(shù)會落在   分數(shù)段;

(4)若成績在90分以上(包括90分)的為“優(yōu)”等,則該校參加這次比賽的3000名學生中成績“優(yōu)”等約有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O,與斜邊AB交于點D、E為BC邊的中點,連接DE.

(1)求證:DE是⊙O的切線;

(2)填空:①若∠B=30°,AC=2,則DE=   

②當∠B=   °時,以O,D,E,C為頂點的四邊形是正方形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:一個正數(shù)的兩個平方根分別是-5a+1,則a的值是_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年成都市元宵節(jié)燈展參觀人數(shù)約為47萬人,將47萬用科學記數(shù)法表示為4.7×10n , 那么n的值為( )
A.3
B.4
C.5
D.6

查看答案和解析>>

同步練習冊答案