【題目】如圖,在等腰△ABC中,ABAC,以AB為直徑的圓OBC于點D,過點CCFAB,與O的切線BE交于點E,連接DE

1)求證:BDCD;

2)求證:△CAB∽△CDE;

3)設(shè)△ABC的面積為S1,△CDE的面積為S2,直徑AB的長為x,若∠ABC30°,S1、S2 滿足S1+S2,試求x的值.

【答案】1)詳見解析;(2)詳見解析;(3x8..

【解析】

1)因為ABAC,欲證明BDDC,只要證明ADBC即可.

2)可以根據(jù)兩角對應(yīng)相等的兩個三角形相似進行證明.

3)分別用x表示S1S2,列出方程即可解決問題.

1)證明:∵AB是直徑,

∴∠ADB90°,

ADBC,

ABAC,

BDCD

2)∵ABCE

∴∠2=∠1,

ABAC

∴∠1=∠3,

BE是⊙O切線,

∴∠ABE90°,

ABCE,

∴∠BEC+ABE90°,

∴∠BEC90°,

BDDC,

DEDBDC,

∴∠2=∠4,

∴∠3=∠2,∠1=∠4,

∴△CAB∽△CDE

3)∵S1

∵△CAB∽△CDE

,

S2,

由題意:,

x±8

x0,

x8

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】雅安地震牽動著全國人民的心,某單位開展了“一方有難,八方支援”賑災(zāi)捐款活動.第一天收到捐款10 000元,第三天收到捐款12 100元.

(1)如果第二天、第三天收到捐款的增長率相同,求捐款增長率;

(2)按照(1)中收到捐款的增長速度,第四天該單位能收到多少捐款?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某班10名學(xué)生校服尺寸與對應(yīng)人數(shù)如圖所示,那么這10名學(xué)生校服尺寸的中位數(shù)為_____cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,EAB的中點,AD//EC,AED=B.

(1)求證:AED≌△EBC;

(2)當(dāng)AB=6時,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩位運動員中選出一名參加在規(guī)定時間內(nèi)的投籃比賽.預(yù)先對這兩名運動員進行了6次測試,成績?nèi)缦拢▎挝唬簜):

甲:6,12,8,12,10,12;

乙:910,11,1012,8

1)填表:

平均數(shù)

眾數(shù)

方差

10

   

   

   

10

2)根據(jù)測試成績,請你運用所學(xué)的統(tǒng)計知識作出分析,派哪一位運動員參賽更好?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年422日是第50個世界地球日,某校在八年級5個班中,每班各選拔10名學(xué)生參加“環(huán)保知識競賽”并評出了一、二、三等獎各若干名,學(xué)校將獲獎情況繪成如圖所示的不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請你根據(jù)圖中信息解答下列問題:

1)求本次競賽獲獎的總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中“二等獎”所對應(yīng)扇形的圓心角度數(shù);

3)已知甲、乙、丙、丁4位同學(xué)獲得一等獎,學(xué)校將采取隨機抽簽的方式在4人中選派2人參加上級團委組織的“愛護環(huán)境、保護地球”知識競賽,請求出抽到的2人恰好是甲和乙的概率(用畫樹狀圖或列表等方法求解).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,點EF分別在BC,CD上,AEAF,ACEF相交于點G.下列結(jié)論:①AC垂直平分EF;②BE+DFEF;③當(dāng)∠DAF15°時,△AEF為等邊三角形;④當(dāng)∠EAF60°時,SABESCEF.其中正確的是( 。

A. ①③B. ②④C. ①③④D. ②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)軸于點、,交軸于點,在軸上有一點,連接.

(1)求二次函數(shù)的表達式;

(2)若點為拋物線在軸負(fù)半軸上方的一個動點,求面積的最大值;

(3)拋物線對稱軸上是否存在點,使為等腰三角形,若存在,請直接寫出所有點的坐標(biāo),若不存在請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,以AC為直徑的⊙OAB于點D,連接CD,∠BCD=A.

1)求證:BC是⊙O的切線;

2)若BC=5BD=3,求點OCD的距離.

查看答案和解析>>

同步練習(xí)冊答案