【題目】如圖,拋物線y=﹣(x+1)(x﹣m)交x軸于A,B兩點(A在B的左側(cè),m>0),交y軸正半軸于點C,過點C作x軸的平行線交拋物線于另一點E,拋物線的對稱軸交CE于點F,以C為圓心畫圓,使⊙C經(jīng)過點(0,2).

(1)直接寫出OB,OC的長.(均用含m的代數(shù)式表示)
(2)當m>2時,判斷點E與⊙C的位置關系,并說明理由.
(3)當拋物線的對稱軸與⊙C相交時,其中下方的交點為D.連結(jié)CD,BD,BC.
①當m>3,且C,D,B三點在同一直線上時,求m的值.
②當△BCD是以CD為腰的等腰三角形時,求m的值.(直接寫出答案即可)

【答案】
(1)

解:由拋物線y=﹣(x+1)(x﹣m)可知A(﹣1,0),B(m,0),

∴OB=m,

令x=0,求得y=m,

∴C(0,m),

∴OC=m


(2)

解:∵OA=1,OB=m,

∴CE=m﹣1,

∵⊙C經(jīng)過點(0,2),

∴⊙C的半徑為m﹣2,

∵m﹣2<m﹣1,

∴點E在⊙C外


(3)

解:①∵OB=OC=m,

∴△BOC是等腰直角三角形,

∴∠OCB=45°,

∴∠BCE=45°,

∵C,D,B三點在同一直線上,

∴△CDF是等腰直角三角形,

∴CD= CF,即m﹣2= ,

解得m=3+ ;

②∵CD=m﹣2,CF= ,

∴FD= =

∴D( ,m﹣ ),

∵△BCD是以CD為腰的等腰三角形,

∴D在直線BC的垂直平分線上,

∵OB=OC=m,

∴直線BC的垂直平分線為y=x,

把D( ,m﹣ )代入得, =m﹣ ,

整理得m2﹣8m+7=0,解得m1=1,m2=7,

∴當△BCD是以CD為腰的等腰三角形時,m的值為1或7


【解析】(1)由拋物線y=﹣(x+1)(x﹣m)可知A(﹣1,0),B(m,0),得出OB=m,令x=0,求得y=m,得出OC=m;(2)根據(jù)拋物線的對稱性求得CE=m﹣1,因為⊙C經(jīng)過點(0,2),所以⊙C的半徑為m﹣2,根據(jù)m﹣2<m﹣1,即可判定點E在⊙C外;(3)①先證得△BOC是等腰直角三角形,進而證得△CDF是等腰直角三角形,得出CD= CF,即m﹣2= ,解得m=3+ ;②由CD=m﹣2,CF= ,根據(jù)勾股定理FD= = ,得出DG=m﹣ ,根據(jù)CD=DB,得出D在直線BC的垂直平分線上,根據(jù)OB=OC=m,得出直線BC的垂直平分線為y=x,代入D( ,m﹣ ),整理得出m2﹣8m+7=0,解得m1=1,m2=7.
【考點精析】關于本題考查的二次函數(shù)的性質(zhì)和點和圓的三種位置關系,需要了解增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減;圓和點的位置關系:以點P與圓O的為例(設P是一點,則PO是點到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r才能得出正確答案.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點A是雙曲線y= 在第一象限的分支上的一個動點,連結(jié)AO并延長交另一分支于點B,以AB為斜邊做等腰直角△ABC,點C在第四象限.隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y= (k<0)上運動,則k的值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,∠C=90°,AC=8cm,BC=6cm,若動點P從點C開始,按C→A→B→C的路徑運動,且速度為每秒2cm,設運動的時間為t秒.

(1)當t為何值時,CPABC的周長分成相等的兩部分.

(2)當t為何值時,CPABC的面積分成相等的兩部分,并求出此時CP的長;(說明:直角三角形斜邊上的中線等于斜邊的一半)

(3)當t為何值時,BCP為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D為⊙O上一點,點C在直徑BA的延長線上,且∠CDA=∠CBD.

(1)求證:CD是⊙O的切線.
(2)過點B作⊙O的切線交CD的延長線于點E,若OB=5,BC=18,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知ABC中,AB=AC,AB的垂直平分線交AC于D,ABC和DBC的周長分別是70cm和48cm,則ABC的腰和底邊長分別為( )

A.24cm和22cm B.26cm和18cm

C.22cm和26cm D.23cm和24cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】紙在某謄印社復印文件,復印頁數(shù)不超過時每頁收費元;復印頁數(shù)超過時,超過部分每頁收費元.在某圖書館復印同樣的文件,不論復印多少頁,每頁收費元,如何根據(jù)復印的頁數(shù)選擇復印的地點使總價格比較便宜?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形ABCD中,AC=6cm,BD=4cm.若以BD為邊作正方形BDEF,則AF=__cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知函數(shù)x>0)的圖象經(jīng)過點A,B,點A的坐標為(1,2).過點AACy軸,AC1(點C位于點A的下方),過點CCDx軸,與函數(shù)的圖象交于點D,過點BBECD,垂足E在線段CD上,連接OC,OD

1)求△OCD的面積;

2)當BEAC時,求CE的長.

【答案】1;(2.

【解析】試題分析:(1)根據(jù)函數(shù)x>0)的圖象經(jīng)過點A(12),求函數(shù)解析式,再有ACy軸,AC1求出C點坐標,然后根據(jù)CDx軸,求D點坐標,從而可求CD長,最后利用三角形面積公式求出OCD的面積.

2)通過BEAC,求得B點坐標,進而求得CE.

試題解析:解:(1函數(shù)x>0)的圖象經(jīng)過點A(1,2)

,即k=2.

∵AC∥y軸,AC1,C的坐標為(1,1.

∵ CD∥x軸,點D在函數(shù)圖像上,D的坐標為(21.

.

2BEAC,BE.

BECD,B的縱坐標是B的橫坐標是.

CE=.

考點:1.反比例函數(shù)綜合題;3.曲線上點的坐標與方程的關系;3.三角形的面積.

型】解答
結(jié)束】
27

【題目】閱讀材料: 小明在學習二次根式后,發(fā)現(xiàn)一些含根號的式子可以寫成另一個式子的平方,如:,善于思考的小明進行了以下探索:

(其中均為整數(shù)),則有

.這樣小明就找到了一種把部分的式子化為平方式的方法.

請你仿照小明的方法探索并解決下列問題:

(1)當均為正整數(shù)時,若,用含m、n的式子分別表示,得    ,   ;

(2)利用所探索的結(jié)論,找一組正整數(shù),填空:    =(      )2;

(3)若,且均為正整數(shù),求的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算

(2);

(3) (4);

(5); (6)

查看答案和解析>>

同步練習冊答案