【題目】某校開展了“互助、平等、感恩、和諧、進(jìn)取”主題班會(huì)活動(dòng),活動(dòng)后,就活動(dòng)的個(gè)主題進(jìn)行了抽樣調(diào)查(每位同學(xué)只選最關(guān)注的一個(gè)),根據(jù)調(diào)查結(jié)果繪制了兩幅不完整的統(tǒng)計(jì)圖.根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)這次調(diào)查的學(xué)生共有多少名?
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整,并在扇形統(tǒng)計(jì)圖中計(jì)算出“進(jìn)取”所對(duì)應(yīng)的圓心角的度數(shù).
(3)如果要在這個(gè)主題中任選兩個(gè)進(jìn)行調(diào)查,根據(jù)(2)中調(diào)查結(jié)果,用樹狀圖或列表法,求恰好選到學(xué)生關(guān)注最多的兩個(gè)主題的概率(將互助、平等、感恩、和諧、進(jìn)取依次記為A、B、C、D、E).
【答案】(1)280名;(2)補(bǔ)圖見解析;108°;(3)0.1.
【解析】試題分析:(1)根據(jù)“平等”的人數(shù)除以占的百分比得到調(diào)查的學(xué)生總數(shù)即可;
(2)求出“互助”與“進(jìn)取”的學(xué)生數(shù),補(bǔ)全條形統(tǒng)計(jì)圖,求出“進(jìn)取”占的圓心角度數(shù)即可;
(3)列表或畫樹狀圖得出所有等可能的情況數(shù),找出恰好選到“C”與“E”的情況數(shù),即可求出所求的概率.
試題解析:(1)56÷20%=280(名),答:這次調(diào)查的學(xué)生共有280名;
(2)280×15%=42(名),280﹣42﹣56﹣28﹣70=84(名),
補(bǔ)全條形統(tǒng)計(jì)圖,如圖所示,
根據(jù)題意得:84÷280=30%,360°×30%=108°,
答:“進(jìn)取”所對(duì)應(yīng)的圓心角是108°;
(3)由(2)中調(diào)查結(jié)果知:學(xué)生關(guān)注最多的兩個(gè)主題為“進(jìn)取”和“感恩”用列表法為:
A | B | C | D | E | |
A | (A,B) | (A,C) | (A,D) | (A,E) | |
B | (B,A) | (B,C) | (B,D) | (B,E) | |
C | (C,A) | (C,B) | (C,D) | (C,E) | |
D | (D,A) | (D,B) | (D,C) | (D,E) | |
E | (E,A) | (E,B) | (E,C) | (E,D) |
用樹狀圖為:
共20種情況,恰好選到“C”和“E”有2種,
∴恰好選到“進(jìn)取”和“感恩”兩個(gè)主題的概率是0.1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將直角三角形ACB, ,AC=6,沿CB方向平移得直角三角形DEF,BF=2,DG=,陰影部分面積為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】端午節(jié)期間,揚(yáng)州某商場(chǎng)為了吸引顧客,開展有獎(jiǎng)促銷活動(dòng),設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,轉(zhuǎn)盤被分成4個(gè)面積相等的扇形,四個(gè)扇形區(qū)域里分別標(biāo)有“10元”、“20元”、“30元”、“40元”的字樣(如圖).規(guī)定:同一日內(nèi),顧客在本商場(chǎng)每消費(fèi)滿100元就可以轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,商場(chǎng)根據(jù)轉(zhuǎn)盤指針指向區(qū)域所標(biāo)金額返還相應(yīng)數(shù)額的購(gòu)物券,某顧客當(dāng)天消費(fèi)240元,轉(zhuǎn)了兩次轉(zhuǎn)盤.
(1)該顧客最少可得 元購(gòu)物券,最多可得 元購(gòu)物券;
(2)請(qǐng)用畫樹狀圖或列表的方法,求該顧客所獲購(gòu)物券金額不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,點(diǎn)P是線段AD上的一個(gè)動(dòng)點(diǎn),O為BD的中點(diǎn),PO的延長(zhǎng)線交BC于Q.
(1)求證:OP=OQ ;
(2)若AD=8cm,AB=6cm,點(diǎn)P從點(diǎn)A出發(fā),以 的速度向點(diǎn)D 運(yùn)動(dòng)(不與D重合).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒,請(qǐng)用t表示PD的長(zhǎng);
(3)當(dāng)t為何值時(shí),四邊形PBQD是菱形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】樂(lè)樂(lè)家附近的商場(chǎng)為了吸引顧客,設(shè)立了一個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤,AB為轉(zhuǎn)盤直徑,如圖所示,并規(guī)定:顧客消費(fèi)50元(含50元)以上,就能獲得一次轉(zhuǎn)盤的機(jī)會(huì),如果轉(zhuǎn)盤停止后,指針正好對(duì)準(zhǔn)9折、8折、7折區(qū)域,顧客就可以獲得相應(yīng)的優(yōu)惠
(1)某顧客消費(fèi)40元,是否可以獲得轉(zhuǎn)盤的機(jī)會(huì)?
(2)某顧客正好消費(fèi)66元,他轉(zhuǎn)一次轉(zhuǎn)盤,獲得三種打折優(yōu)惠的概率分別是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線l1:y=2x+4與y軸交于A點(diǎn),與x軸交于點(diǎn)B,經(jīng)過(guò)A點(diǎn)的直線l2與直線l1所夾的銳角為45°.
(1)過(guò)點(diǎn)B作CB⊥AB,交l2于C,求點(diǎn)C的坐標(biāo).
(2)求l2的函數(shù)解析式.
(3)在直線l1上存在點(diǎn)M,直線l2上存在點(diǎn)N,使得點(diǎn)A、O、M、N四點(diǎn)組成的四邊形是平行四邊形,請(qǐng)直接寫出點(diǎn)N的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校九年級(jí)一班的暑假活動(dòng)安排中,有一項(xiàng)是小制作評(píng)比.作品上交時(shí)限為8月1日至30日,班委會(huì)把同學(xué)們交來(lái)的作品按時(shí)間順序每5天組成一組,對(duì)每一組的件數(shù)進(jìn)行統(tǒng)計(jì),繪制成如圖所示的統(tǒng)計(jì)圖.已知從左到右各矩形的高度比為2:3:4:6:1.第三組的頻數(shù)是12.請(qǐng)你回答:
(1)本次活動(dòng)共有 件作品參賽;
(2)若將各組所占百分比繪制成扇形統(tǒng)計(jì)圖,那么第四組對(duì)應(yīng)的扇形的圓心角是 度。
(3)本次活動(dòng)共評(píng)出2個(gè)一等獎(jiǎng)和3個(gè)二等獎(jiǎng)及三等獎(jiǎng)、優(yōu)秀獎(jiǎng)若干名,對(duì)一、二等獎(jiǎng)作品進(jìn)行編號(hào)并制作成背面完全一致的卡片,背面朝上的放置,隨機(jī)抽出兩張卡片,抽到的作品恰好一個(gè)是一等獎(jiǎng),一個(gè)是二等獎(jiǎng)的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,動(dòng)點(diǎn)P在平面直角坐標(biāo)系中按圖中箭頭所示方向運(yùn)動(dòng),第1次從原點(diǎn)運(yùn)動(dòng)到點(diǎn)(1,1),第2次接著運(yùn)動(dòng)到點(diǎn)(2,0),第3次接著運(yùn)動(dòng)到點(diǎn)(3,2),…,按這樣的運(yùn)動(dòng)規(guī)律,經(jīng)過(guò)第2011次運(yùn)動(dòng)后,動(dòng)點(diǎn)P的坐標(biāo)是____________。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com