【題目】如圖,動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),第2次接著運動到點(2,0),第3次接著運動到點(3,2),…,按這樣的運動規(guī)律,經(jīng)過第2011次運動后,動點P的坐標是____________。

【答案】(2011,2)

【解析】根據(jù)動點P在平面直角坐標系中按圖中箭頭所示方向運動,第1次從原點運動到點(1,1),
第2次接著運動到點(2,0),第3次接著運動到點(3,2),
∴第4次運動到點(4,0),第5次接著運動到點(5,1),…,
∴橫坐標為運動次數(shù),經(jīng)過第2011次運動后,動點P的橫坐標為2011,
縱坐標為1,0,2,0,每4次一輪,
∴經(jīng)過第2011次運動后,動點P的縱坐標為:2011÷4=502余3,
故縱坐標為四個數(shù)中第三個,即為2,
∴經(jīng)過第2011次運動后,動點P的坐標是:(2011,2),
故答案為:(2011,2).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】平面直角坐標系中,已知A(2,2)、B(40).若在坐標軸上取點C,使ABC為等腰三角形,則滿足條件的點C的個數(shù)是__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】化簡,求值

(1)5x2y+{xy﹣[5x2y﹣(7xy2+xy)]﹣(4x2y+xy)}﹣7xy2,其中x=﹣,y=﹣16.

(2)A=4x2﹣2xy+4y2,B=3x2﹣6xy+3y2,且|x|=3,y2=16,|x+y|=1,求4A+[(2A﹣B)﹣3(A+B)]的值.

(3)如果m﹣3n+4=0,求:(m﹣3n)2+7m3﹣3(2m3n﹣m2n﹣1)+3(m3+2m3n﹣m2n+n)﹣m﹣10m3的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】認真閱讀下面關于三角形內外角平分線的研究片斷,完成所提出的問題.

探究1:如圖(1)在△ABC中,O是∠ABC與∠ACB的平分線BO和CO的交點,通過分析發(fā)現(xiàn)∠BOC=90°+∠A,理由如下:

∵BO和CO分別是∠ABC和∠ACB的角平分線,∴∠1=∠ABC,∠2=∠ACB.

∴∠1+∠2= (∠ABC+∠ACB)= (180°-∠A)=90°-∠A.

∴∠BOC=180°-(∠1+∠2)=180°-(90°-∠A)=90°+∠A

探究2:如圖(2)中,O是∠ABC與外角∠ACD的平分線BO和CO的交點,試分析∠BOC與∠A有怎樣的關系?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,隧道的截面由半圓和長方形構成,長方形的長BC為8m,寬AB為1m,該隧道內設雙向行駛的車道(共有2條車道),若現(xiàn)有一輛貨運卡車高4m,寬2.3m。則這輛貨運卡車能否通過該隧道?說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點是反比例函數(shù)圖像上一點,作軸于點,且的面積為,點坐標為

)求的值.

)若直線經(jīng)過點,交另一支雙曲線于點,求的面積.

)指出取何值時,一次函數(shù)的值大于反比例函數(shù)的值,直接寫出結果.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是(
A.①②③
B.①②④
C.①③④
D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=kx+b經(jīng)過點A(0,6),且平行于直線y=-2x.

1求該函數(shù)的解析式,并畫出它的圖象;

2如果這條直線經(jīng)過點P(m,2),求m的值;

3若O為坐標原點,求直線OP的解析式;

4求直線y=kx+b和直線OP與坐標軸所圍成的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點A(﹣1,0)、B(3,0)、點C三點.

(1)試求拋物線的解析式;
(2)點D(2,m)在第一象限的拋物線上,連接BC、BD.試問,在對稱軸左側的拋物線上是否存在一點P,滿足∠PBC=∠DBC?如果存在,請求出點P點的坐標;如果不存在,請說明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個單位長度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過程中,△B′O′C′與△BCD重疊的面積記為S,設平移的時間為t秒,試求S與t之間的函數(shù)關系式?

查看答案和解析>>

同步練習冊答案