【題目】小明同學(xué)解一元二次方程x26x10的過程如圖所示.

解:x26x1 …

x26x+91 …

x321 …

x3±1 …

x14,x22 …

1)小明解方程的方法是   

A)直接開平方法 B)因式分解法 C)配方法 D)公式法

他的求解過程從第   步開始出現(xiàn)錯誤.

2)解這個方程.

【答案】1C,②;(2x1+3,x2=﹣+3

【解析】

1)認真分析小明的解答過程即可發(fā)現(xiàn)其在第幾步出現(xiàn)錯誤、然后作答即可;

2)用配方法解該二元一次方程即可.

解:(1)由小明的解答過程可知,他采用的是配方法解方程,

故選:C,

他的求解過程從第②步開始出現(xiàn)錯誤,

故答案為:②;

2)∵x26x1

x26x+91+9

∴(x3210,

x3=±

x=±+3

x1+3,x2=﹣+3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料:若關(guān)于x的一元二次方程ax2+bx+c0的兩個非零實數(shù)根分別為x1,x2,則x1+x2=﹣,x1x2.

解決下列問題:已知關(guān)于x的一元二次方程(x+n)26x有兩個非零不等實數(shù)根x1,x2,設(shè)m,

()當(dāng)n1時,求m的值;

()是否存在這樣的n值,使m的值等于?若存在,求出所有滿足條件的n的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線型拱橋,當(dāng)拱頂離水面2m時,水面寬4m,水面下降2m,水面寬度增加______m.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為吸引市民組團去風(fēng)景區(qū)旅游,觀光旅行社推出了如下收費標(biāo)準(zhǔn):

某單位員工去風(fēng)景區(qū)旅游,共支付給旅行社旅游費用10500元,請問該單位這次共有多少員工去風(fēng)景區(qū)旅游?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°DBC的中點,EAD的中點,過點AAFBCBE的延長線于點F

1)求證:四邊形ADCF是菱形;

3)若AC6,AB8,求菱形ADCF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,C地在B地的正東方向,因有大山阻隔,由B地到C地需繞行A地,已知A地位于B地北偏東53°方向,距離B516千米,C地位于A地南偏東45°方向.現(xiàn)打算打通穿山隧道,建成兩地直達高鐵,求建成高鐵后從B地前往C地的路程.(結(jié)果精確到1千米)(參考數(shù)據(jù):sin53°,cos53°,tan53°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC是等邊三角形,點DAC邊上,將BCD繞點C旋轉(zhuǎn)得到ACE

1)求證:DEBC

2)若AB8BD7,求ADE的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB⊙O的直徑,C⊙0上的一點,直線MN經(jīng)過點C,過點A作直線MN的垂線,垂足為點D,且∠BAC=∠DAC

1)猜想直線MN⊙O的位置關(guān)系,并說明理由;

2)若CD=6cos∠ACD=,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線BC與⊙A相切于點C,過BCB的垂線交⊙ODE兩點,已知AC,CBa,則以BE,BD的長為兩根的一元二次方程是(  )

A.x2+bx+a20B.x2bx+a20C.x2+bxa20D.x2bxa20

查看答案和解析>>

同步練習(xí)冊答案