【題目】騰飛中學(xué)在教學(xué)樓前新建了一座騰飛雕塑(如圖11①).為了測量雕塑的高度,小明在二樓找到一點C,利用三角板測得雕塑頂端A點的仰角為30°,底部B點的俯角為45°,小華在五樓找到一點D,利用三角板測得A點的俯角為60°(如圖10②).若已知CD10米,請求出雕塑AB的高度.(結(jié)果精確到01米,參考數(shù)據(jù)=173

【答案】雕塑AB的高度約為68

【解析】

過點CCEABE,根據(jù)題目已知條件可以求出AC=5,利用解直角三角形可以求出AECE的長度,從而進一步求出BE,即可求得AB=AE+BE.

解:如圖,過點CCEABE

∵∠D=90°-60°=30°,∠ACD=90°-30°=60°

∴∠CAD=90°

CD=10,∴AC=CD=5

RtACE中,

AE=ACsinACE=5sin30°=,

CE=ACcosACE=5cos30°=

RtBCE中,

∵∠BCE=45°

BE=CEtan45°=,

AB=AE+BE=+=+1≈6.8(米).所以,雕塑AB的高度約為6.8米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在“停課不停學(xué)”期間,某校數(shù)學(xué)興趣小組對本校同學(xué)觀看教學(xué)視頻所使用的工具進行了調(diào)查,并從中隨機抽取部分?jǐn)?shù)據(jù)進行分析,將分析結(jié)果繪制成了兩幅不完整的統(tǒng)計表與統(tǒng)計圖.

工具

人數(shù)

頻率

手機

44

a

平板

b

0.2

電腦

80

c

電視

20

d

不確定

16

0.08

請根據(jù)上述信息回答下列問題:

1)所抽取出來的同學(xué)共   人,表中a   ,b   ;

2)請補全條形統(tǒng)計圖;

3)若該校觀看教學(xué)視頻的學(xué)生總?cè)藬?shù)為2500人,則使用電腦的學(xué)生人數(shù)約   人.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點O是原點,矩形OABC的頂點Ax軸的正半軸上,頂點Cy的正半軸上,點B的坐標(biāo)是(53),拋物線經(jīng)過AC兩點,與x軸的另一個交點是點D,連接BD

1)求拋物線的解析式;

2)點M是拋物線對稱軸上的一點,以M、B、D為頂點的三角形的面積是6,求點M的坐標(biāo);

3)點P從點D出發(fā),以每秒1個單位長度的速度沿D→B勻速運動,同時點Q從點B出發(fā),以每秒1個單位長度的速度沿B→A→D勻速運動,當(dāng)點P到達點B時,P、Q同時停止運動,設(shè)運動的時間為t秒,當(dāng)t為何值時,以D、PQ為頂點的三角形是等腰三角形?請直接寫出所有符合條件的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B3,0)兩點,與y軸交于C點,點P是拋物線上在第一象限內(nèi)的一個動點,且點P的橫坐標(biāo)為t

1)求拋物線的表達式;

2)設(shè)拋物線的對稱軸為llx軸的交點為D.在直線l上是否存在點M,使得四邊形CDPM是平行四邊形?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

3)如圖2,連接BCPBPC,設(shè)△PBC的面積為S.求S關(guān)于t的函數(shù)表達式;并求S最大時點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線Lymx2+nx-6經(jīng)過點(-2,2),與x軸相交于A-3,0)和B兩點,并與y軸相交于點C.拋物線L′L關(guān)于坐標(biāo)原點對稱,點A,BL′上的對應(yīng)點分別為A′B′

1)求拋物線L的函數(shù)表達式.

2)在拋物線L′上是否存在點P,使得PA′A的面積等于CB′B的面積?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,

1)實踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)字母;(保留作圖痕跡,不寫作法)

為邊在上方外作等邊三角形;

的中線

2)計算:的長為_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AD在反比例函數(shù)的圖像上,點BC在反比例函數(shù)的圖像上,若ABCD軸,軸,且,,,則=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A1在直線l1yx上,過點A1x軸的平行線交直線l2yx于點B1,

過點B1l2的垂線交l1于點A2,過點A2x軸的平行線交直線l2于點B2,過點B2l2的垂線交l1于點A3,過點A3x軸的平行線交直線l2于點B3……,過點B1,B2B3,……,分別作l1的平行線交A2B2于點C1,交A3B3于點C2,交A4B4于點C3,……,按此規(guī)律繼續(xù)下去,若OA11,則點的坐標(biāo)為_______________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在矩形ABCD中,,以點A為旋轉(zhuǎn)中心,逆時針旋轉(zhuǎn)矩形ABCD,旋轉(zhuǎn)角為,得到矩形AEFG,點B、點C、點D的對應(yīng)點分別為點E、點F、點G

如圖,當(dāng)點E落在DC邊上時,直寫出線段EC的長度為______;

如圖,當(dāng)點E落在線段CF上時,AEDC相交于點H,連接AC,

求證:;

直接寫出線段DH的長度為______

如圖設(shè)點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉(zhuǎn)過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.

查看答案和解析>>

同步練習(xí)冊答案