【題目】如圖,點A1在直線l1:y=x上,過點A1作x軸的平行線交直線l2:y=x于點B1,
過點B1作l2的垂線交l1于點A2,過點A2作x軸的平行線交直線l2于點B2,過點B2作l2的垂線交l1于點A3,過點A3作x軸的平行線交直線l2于點B3,……,過點B1,B2,B3,……,分別作l1的平行線交A2B2于點C1,交A3B3于點C2,交A4B4于點C3,……,按此規(guī)律繼續(xù)下去,若OA1=1,則點的坐標(biāo)為_______________.
【答案】
【解析】
根據(jù)兩直線的解析式分別求與的坐標(biāo)坐標(biāo),求出等線段的長,然后根據(jù)四邊形是菱形求解進(jìn)而代入計算即可.
解:∵,
∴l1與x軸的夾角為60°,
∵,
∴l2與x軸的夾角為30°,
∵點B1作l2的垂線交l1于點A2,
∴是等邊三角形,
同理可得等邊三角形
∴四邊形是菱形;
∵OA1=1,
∴點A1的坐標(biāo)為:,
∴,解得,
∴點B1的橫坐標(biāo)為,
∴點A2的橫坐標(biāo)為:,
∴OA2=2,
∴,
∴,
∴點A2的縱坐標(biāo)為,
∴點C1的橫坐標(biāo)為:2,
即點C1的坐標(biāo)為(21,);
∴點A3的橫坐標(biāo)為2,
∴點C2的橫坐標(biāo)為:2+2=4,
∵點A3的縱坐標(biāo)為2
∴點C2的橫坐標(biāo)為:2,
故點C2的坐標(biāo)為(22,21),
…
則點Cn的坐標(biāo)為(2n,).
當(dāng)時,則有為
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的口袋中,有四個完全相同的小球,把它們分別標(biāo)號為1,﹣2,3,4,隨機(jī)摸取一個小球記下標(biāo)號后放回,再隨機(jī)摸取一個小球記下標(biāo)號,則兩次摸取的小球的標(biāo)號之積為負(fù)數(shù)的概率為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】騰飛中學(xué)在教學(xué)樓前新建了一座“騰飛”雕塑(如圖11①).為了測量雕塑的高度,小明在二樓找到一點C,利用三角板測得雕塑頂端A點的仰角為30°,底部B點的俯角為45°,小華在五樓找到一點D,利用三角板測得A點的俯角為60°(如圖10②).若已知CD為10米,請求出雕塑AB的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù)=1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c的開口向上,與x軸相交于A、B兩點(點A在點B的右側(cè)),點A的坐標(biāo)為(m,0),且AB=4.
(1)填空:點B的坐標(biāo)為 (用含m的代數(shù)式表示);
(2)把射線AB繞點A按順時針方向旋轉(zhuǎn)135°與拋物線交于點P,△ABP的面積為8:
①求拋物線的解析式(用含m的代數(shù)式表示);
②當(dāng)0≤x≤1,拋物線上的點到x軸距離的最大值為時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=3,BC=1,點D是斜邊上一點,且AD=4BD.
(1)求tan∠BCD的值;
(2)過點B的⊙O與邊AC相切,切點為AC的中點E,⊙O與直線BC的另一個交點為F.
(ⅰ)求⊙O的半徑;
(ⅱ) 連接AF,試探究AF與CD的位置關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,海中有一小島P,在距小島P的海里范圍內(nèi)有暗礁,一輪船自西向東航行,它在A處時測得小島P位于北偏東60°,且A、P之間的距離為32海里,若輪船繼續(xù)向正東方向航行,輪船有無觸礁危險?請通過計算加以說明.如果有危險,輪船自A處開始至少沿東偏南多少度方向航行,才能安全通過這一海域?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一個不透明的盒子里,裝有四個分別標(biāo)有數(shù)字1,2,3,4的小球,它們的形狀、大小、質(zhì)地等完全相同.小米先從盒子中隨機(jī)取出一個小球,記下數(shù)字為x,且不放回盒子,再由小華隨機(jī)取出一個小球,記下數(shù)字為y.
(1)用列表法或畫樹狀圖表示出(x,y)的所有可能出現(xiàn)的結(jié)果;
(2)求小米、小華各取一次小球所確定的點(x,y)落在反比例函數(shù)y=的圖象上的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加一個知識競賽,該競賽試題由10道選擇題構(gòu)成,每小題有四個選項,且只有一個選項正確.其給分標(biāo)準(zhǔn)為:答對一題得2分,答錯一題扣1分,不答得0分,若10道題全部答對則額外獎勵5分.小明對其中的8道題有絕對把握答對,剩下2道題完全不知道該選哪個選項.
(1)對于剩下的2道題,若小明都采用隨機(jī)選擇一個選項的做法,求兩小題都答錯的概率;
(2)從預(yù)期得分的角度分析,采用哪種做法解答剩下2道題更合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)(k≠0)的圖像與一次函數(shù)y=-x+b的圖像在第一象限交于A、B兩點,BC⊥x軸于點C,若△OBC的面積為2,且A點的縱坐標(biāo)為4,B點的縱坐標(biāo)為1.
(1)求反比例函數(shù)、一次函數(shù)的表達(dá)式及直線AB與x軸交點E的坐標(biāo);
(2)已知點D(t,0)(t>0),過點D作垂直于x軸的直線,在第一象限內(nèi)與一次函數(shù)y=-x+b的圖像相交于點P,與反比函數(shù)上的圖像相交于點Q,若點P位于點Q的上方,請結(jié)合函數(shù)圖像直接寫出此時t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com