【題目】在矩形ABCD中,,,以點A為旋轉中心,逆時針旋轉矩形ABCD,旋轉角為,得到矩形AEFG,點B、點C、點D的對應點分別為點E、點F、點G.
如圖,當點E落在DC邊上時,直寫出線段EC的長度為______;
如圖,當點E落在線段CF上時,AE與DC相交于點H,連接AC,
求證:≌;
直接寫出線段DH的長度為______.
如圖設點P為邊FG的中點,連接PB,PE,在矩形ABCD旋轉過程中,的面積是否存在最大值?若存在請直接寫出這個最大值;若不存在請說明理由.
【答案】(1);(2)見解析;;(3)存在,的面積的最大值為理由見解析
【解析】
如圖中,在中,利用勾股定理即可解決問題;
證明:如圖中,根據HL即可證明≌;
如圖中,由≌,推出,推出,設,在中,根據,構建方程即可解決問題;
存在如圖中,連接PA,作交PE的延長線于由題意:,由,,推出,推出,推出當BM的值最大時,的面積最大,求出BM的最大值即可解決問題;
四邊形ABCD是矩形,
,,,
矩形AEFG是由矩形ABCD旋轉得到,
,
在中,,
,
故答案為:.
當點E落在線段CF上,
,
在和中,
,
≌;
≌,
,
,設,
在中,,
,
,
,
故答案為:;
存在.理由如下:
如圖中,連接PA,作交PE的延長線于M,
由題意:,
,,
,
,
當BM的值最大時,的面積最大,
,,
,
,
的最大值為,
的面積的最大值為.
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩名同學參加1 000米比賽,由于參賽選手較多,將選手隨機分A、B、C三組進行比賽.
(1)甲同學恰好在A組的概率是________;
(2)求甲、乙兩人至少有一人在B組的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校要求八年級同學在課外活動中,必須在五項球類(籃球、足球、排球、羽毛球、乒乓球)活動中任選一項(只能選一項)參加訓練,為了了解八年級學生參加球類活動的整體情況,現(xiàn)以八年級2班作為樣本,對該班學生參加球類活動的情況進行統(tǒng)計,并繪制了如圖所示的不完整統(tǒng)計表和扇形統(tǒng)計圖:
根據圖中提供的信息,解答下列問題:
(1)a= ,b= ;
(2)該校八年級學生共有600人,則該年級參加足球活動的人數(shù)約 人;
(3)該班參加乒乓球活動的5位同學中,有3位男同學(A,B,C)和2位女同學(D,E),現(xiàn)準備從中選取兩名同學組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=﹣x2+mx的圖象如圖,對稱軸為直線x=2,若關于x的一元二次方程﹣x2+mx﹣t=0(t為實數(shù))在1≤x≤5的范圍內有解,則t的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=a(x﹣m﹣1)2+2m(其中m>0)與其對稱軸l相交于點P.與y軸相交于點A(0,m)連接并延長PA、PO,與x軸、拋物線分別相交于點B、C,連接BC將△PBC繞點P逆時針旋轉,使點C落在拋物線上,設點C、B的對應點分別是點B′和C′.
(1)當m=1時,該拋物線的解析式為: .
(2)求證:∠BCA=∠CAO;
(3)試問:BB′+BC﹣BC′是否存在最小值?若存在,求此時實數(shù)m的值,若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:有一個角是其對角兩倍的圓的內接四邊形叫做圓美四邊形,其中這個角叫做美角已知四邊形ABCD是圓美四邊形
求美角的度數(shù);
如圖1,若的半徑為,求BD的長;
如圖2,若CA平分,求證:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a、b、c為常數(shù),且a≠0)的圖象如圖所示,給出下列結論:①b2>4ac; ②abc<0;③a<b; ④b+c>3a;⑤方程ax2+bx+c=0的兩根之和的一半大于﹣1.其中,正確的結論有( 。
A. ①②③⑤B. .①②④⑤C. ①②④D. .①②③④⑤
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=x2+bx+c經過點A、B、C,已知A(﹣1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)如圖1,拋物線頂點為E,EF⊥x軸于F點,M(m,0)是x軸上一動點,N是線段EF上一點,若∠MNC=90°,請指出實數(shù)m的變化范圍,并說明理由.
(3)如圖2,將拋物線平移,使其頂點E與原點O重合,直線y=kx+2(k>0)與拋物線相交于點P、Q(點P在左邊),過點P作x軸平行線交拋物線于點H,當k發(fā)生改變時,請說明直線QH過定點,并求定點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一年一度的“春節(jié)”即將到來,某超市購進一批價格為每千克3元的桔子,根據市場預測,該種桔子每千克售價4元時,每天能售出500千克,并且售價每上漲0.1元,其銷售量將減少10千克,物價部門規(guī)定,該種桔子的售價不能超過進價的200%,請你利用所學知識幫助超市給這種桔子定價,使得超市每天銷售這種桔子的利潤為800元.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com