【題目】已知,直角坐標(biāo)系中,點(diǎn)E(-4,2),F(-1,-1),以O為位似中心,按比例尺2:1把△EFO縮小,則點(diǎn)E的對(duì)應(yīng)點(diǎn) 的坐標(biāo)為(  )
A.(2,-1)或(-2,1)
B.(8,-4)或(-8,4)
C.(2,-1)
D.(8,-4)

【答案】A
【解析】解答:∵E(-4,2),位似比為1:2, ∴點(diǎn)E的對(duì)應(yīng)點(diǎn) 的坐標(biāo)為(2,-1)或(-2,1).
故選:A.
分析:注意位似的兩種位置關(guān)系,利用位似比為1:2,可求得點(diǎn)E的對(duì)應(yīng)點(diǎn) 的坐標(biāo)為(2,-1)或(-2,1).此題考查了位似的相關(guān)知識(shí),位似是相似的特殊形式,位似比等于相似比.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解位似變換(它們具有相似圖形的性質(zhì)外還有圖形的位置關(guān)系(每組對(duì)應(yīng)點(diǎn)所在的直線都經(jīng)過同一個(gè)點(diǎn)—位似中心)).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在一長方形休閑廣場(chǎng)的四角都設(shè)計(jì)一塊半徑相同的四分之一圓的花壇,正中設(shè)計(jì)一個(gè)圓形噴水池,若四周圓形和中間圓形的半徑均為米,廣場(chǎng)長為米,寬為米.

(1)請(qǐng)列式表示廣場(chǎng)空地的面積;

(2)若休閑廣場(chǎng)的長為500米,寬為300米,圓形花壇的半徑為20米,求廣場(chǎng)空地的面積(計(jì)算結(jié)果保留).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在學(xué)習(xí)了《展開與折疊》這一課后,明白了很多幾何體都能展開成平面圖形.于是他在家用剪刀展開了一個(gè)長方體紙盒,可是一不小心多剪了一條棱,把紙盒剪成了兩部分,即圖中的①和②.根據(jù)你所學(xué)的知識(shí),回答下列問題:

(1)小明總共剪開了_______條棱.

(2)現(xiàn)在小明想將剪斷的②重新粘貼到①上去,而且經(jīng)過折疊以后,仍然可以還原成一個(gè)長方體紙盒,你認(rèn)為他應(yīng)該將剪斷的紙條粘貼到①中的什么位置?請(qǐng)你幫助小明在①上補(bǔ)全.

(3)小明說:他所剪的所有棱中,最長的一條棱是最短的一條棱的5倍.現(xiàn)在已知這個(gè)長方體紙盒的底面是一個(gè)正方形,并且這個(gè)長方體紙盒所有棱長的和是880cm,求這個(gè)長方體紙盒的體積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,

(1)如果開始輸入x的值是1,可發(fā)現(xiàn)第一次輸出的是4,第二次輸出的是   ,第三次輸出的是   ,第4次輸出的是   ,請(qǐng)根據(jù)你的發(fā)現(xiàn)填寫如表:

輸出次數(shù)

1

2

3

4

5

3n

3n+1

3n+2

輸出的數(shù)

4

   

1

   

   

   

   

   

(2)如果開始輸入的數(shù)是11,可發(fā)現(xiàn)第一次輸出的是14,第二次輸出的是7,…“,請(qǐng)你探索第2017次和2018次輸出的結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組,某天乘一輛汽車檢修東西走向的“漢施公路”時(shí),約定向東行駛為正,向西行駛為負(fù),他們從A地出發(fā)到收工時(shí)的行走記錄為(單位:千米):-4,+7,-9,+8,+6,-5,+10,-8.

(1)收工時(shí),該小組距離A地多遠(yuǎn)?

(2) 若汽車行駛每千米耗油0.2升,那么從A地出發(fā)到回到A地共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a1,a2,a3,a4,…滿足下列條件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,……以此類推,則a2018的值為( 。

A. ﹣1007 B. ﹣1008 C. ﹣1009 D. ﹣2018

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,CDAB,DCB=70°,CBF=20°,EFB=130°,

(1)問直線EFAB有怎樣的位置關(guān)系?加以證明;

(2)若∠CEF=70°,求∠ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】常州每年舉行一次“一袋牛奶的暴走”公益活動(dòng),用步行的方式募集善款,其中挑戰(zhàn)型路線”的起點(diǎn)是淹城站,并沿著規(guī)定的線路到達(dá)終點(diǎn)吾悅國際站.甲、乙兩組市民從起點(diǎn)同時(shí)出發(fā),已知甲組的速度為6km/h,乙組的速度為5km/h,當(dāng)甲組到達(dá)終點(diǎn)后,立即以3km/h的速度按原線路返回,并在途中的P站與乙組相遇,P站與吾悅國際站之間的路程為1.5km

(1)求“挑戰(zhàn)型路線”的總長;

(2)當(dāng)甲組到達(dá)終點(diǎn)時(shí),乙組離終點(diǎn)還有多少路程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小蘭和小潭分別用擲A、B兩枚骰子的方法來確定P(x,y)的位置,她們規(guī)定:小蘭擲得的點(diǎn)數(shù)為x,小譚擲得的點(diǎn)數(shù)為y,那么,她們各擲一次所確定的點(diǎn)落在已知直線y=-2x+6上的概率為()
A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案