【題目】如圖,甲、乙分別是4等分、3等分的兩個圓轉(zhuǎn)盤,指針固定,轉(zhuǎn)盤轉(zhuǎn)動停止后,指針指向某一數(shù)字.
(1)直接寫出轉(zhuǎn)動甲盤停止后指針指向數(shù)字“1”的概率;
(2)小華和小明利用這兩個轉(zhuǎn)盤做游戲,兩人分別同時轉(zhuǎn)動甲、乙兩個轉(zhuǎn)盤,停止后,指針各指向一個數(shù)字,若兩數(shù)字之積為非負(fù)數(shù)則小華勝;否則,小明勝.你認(rèn)為這個游戲公平嗎?請你利用列舉法說明理由.

【答案】
(1)解:甲盤停止后指針指向數(shù)字“1”的概率=
(2)解:列表得:

轉(zhuǎn)盤A

兩個數(shù)字之積

轉(zhuǎn)盤B

﹣1

0

2

1

1

﹣1

0

2

1

﹣2

2

0

﹣4

﹣2

﹣1

1

0

﹣2

﹣1

∵由兩個轉(zhuǎn)盤各轉(zhuǎn)出一數(shù)字作積的所有可能情況有12種,每種情況出現(xiàn)的可能性相同,其中兩個數(shù)字之積為非負(fù)數(shù)有7個,負(fù)數(shù)有5個,

∴P(小華獲勝)= ,P(小明獲勝)=

∴這個游戲?qū)﹄p方不公平


【解析】(1)由題意可知轉(zhuǎn)盤中共有四個數(shù),其中“1”只有一種,進(jìn)而求出其概率;(2)首先根據(jù)題意列出表格,然后由表格即可求得所有等可能的結(jié)果與小華、小明獲勝的情況,繼而求得小華、小明獲勝的概率,比較概率大小,即可知這個游戲是否公平.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一組數(shù)據(jù)2,3,5,5,5,6,9.若去掉一個數(shù)據(jù)5,則下列統(tǒng)計量中,發(fā)生變化的是( )

A. 平均數(shù) B. 眾數(shù)

C. 中位數(shù) D. 方差

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知圓的兩條平行的弦長分別為6cm和8cm,圓的半徑為5cm,則兩條平行弦的距離為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點E在△ABC內(nèi),∠ABC=∠EBD=α,∠ACB=∠EDB=60°,∠AEB=150°,∠BEC=90°.
(1)當(dāng)α=60°時(如圖1), ①判斷△ABC的形狀,并說明理由;
②求證:BD= AE;
(2)當(dāng)α=90°時(如圖2),求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,分別以Rt△ABC的斜邊AB,直角邊AC為邊向外作等邊△ABD和△ACE,F(xiàn)為AB的中點,DE,AB相交于點G,若∠BAC=300,下列結(jié)論:①EF⊥AC;②四邊形ADFE為菱形;③AD=4AG;④△DBF≌△EFA.其中正確結(jié)論的序號是(

A. ②④ B. ①③ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知函數(shù)y=2x和函數(shù)y=的圖象交于A、B兩點,過點A作AEx軸于點E,若AOE的面積為4,P是坐標(biāo)平面上的點,且以點B、O、E、P為頂點的四邊形是平行四邊形,則k= ,滿足條件的P點坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在△ABC中,DBC邊上的一點,EAD的中點,過點ABC的平行線交與BE的延長線于點F,且AF=DC,連結(jié)CF

1)求證:四邊形ADCF是平行四邊形;

2)當(dāng)ABAC有何數(shù)量關(guān)系時,四邊形ADCF為矩形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=16cm,AB=12cm,BC=21cm,動點P從點B出發(fā),沿射線BC的方向以每秒2cm的速度運動,動點Q從點A出發(fā),在線段AD上以每秒1cm的速度向點D運動,點P,Q分別從點B,A同時出發(fā),當(dāng)點Q運動到點D時,點P隨之停止運動,設(shè)運動的時間為t(秒).

(1)當(dāng)t為何值時,四邊形PQDC是平行四邊形

(2)當(dāng)t為何值時,以C,D,Q,P為頂點的梯形面積等于60cm2

(3)是否存在點P,使△PQD是等腰三角形?若存在,請求出所有滿足要求的t的值,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)圖象如圖所示,根據(jù)圖象可得:

(1)拋物線頂點坐標(biāo)
(2)對稱軸為
(3)當(dāng)x=時,y有最大值是
(4)當(dāng)時,y隨著x得增大而增大.
(5)當(dāng)時,y>0.

查看答案和解析>>

同步練習(xí)冊答案