【題目】已知圓的兩條平行的弦長分別為6cm和8cm,圓的半徑為5cm,則兩條平行弦的距離為

【答案】7cm或1cm
【解析】解:如圖,AB∥CD,AB=6cm,CD=8cm, 過O點(diǎn)作OE⊥AB于E,交CD于F點(diǎn),連OA、OC,
∴AE=BE= AB=3,
∵AB∥CD,EF⊥AB,
∴EF⊥CD,
∴CF=FD= CD=4,
在Rt△OAE中,OA=5cm
OE= =4,
同理可得OF=3,
當(dāng)圓心O在AB與CD之間時(shí),AB與CD的距離=OE+OF=4+3=7cm,
當(dāng)圓心O不在AB與CD之間時(shí),AB與CD的距離=OE﹣OF=4﹣3=1cm,
所以答案是:7cm或1cm.

【考點(diǎn)精析】本題主要考查了勾股定理的概念和垂徑定理的相關(guān)知識(shí)點(diǎn),需要掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2;垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對(duì)的兩條弧才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算結(jié)果為正數(shù)的是(
A.(﹣ 2
B.﹣(﹣ 0
C.(﹣ 3
D.﹣| |

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明去文具用品商店給同學(xué)買某品牌水性筆,已知甲、乙兩商店都有該品牌的水性筆且標(biāo)價(jià)都是2/支,但甲、乙兩商店的優(yōu)惠條件卻不同.

甲商店:若購買不超過10支,則按標(biāo)價(jià)付款;若一次購10支以上,則超過10支的部分按標(biāo)價(jià)的60%付款. 乙商店:按標(biāo)價(jià)的80%付款.

在水性筆的質(zhì)量等因素相同的條件下.

(1)設(shè)小明要購買的該品牌筆數(shù)是x(x>10)支,請(qǐng)用含x的式子分別表示在甲、乙兩個(gè)商店購買該品牌筆買水性筆的費(fèi)用.

(2)若小明要購買該品牌筆30支,你認(rèn)為在甲、乙兩商店中,到哪個(gè)商店購買比較省錢?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B和線段MN都在數(shù)軸上,點(diǎn)A、M、N、B對(duì)應(yīng)的數(shù)字分別為﹣10、2、11.線段MN沿?cái)?shù)軸的正方向以每秒1個(gè)單位的速度移動(dòng),移動(dòng)時(shí)間為t秒.

1)用含有t的代數(shù)式表示AM的長為  

2)當(dāng)t=  秒時(shí),AM+BN=11

3)若點(diǎn)AB與線段MN同時(shí)移動(dòng),點(diǎn)A以每秒2個(gè)單位速度向數(shù)軸的正方向移動(dòng),點(diǎn)B以每秒1個(gè)單位的速度向數(shù)軸的負(fù)方向移動(dòng),在移動(dòng)過程,AMBN可能相等嗎?若相等,請(qǐng)求出t的值,若不相等,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)E,F分別是邊AB,CD的中點(diǎn),(1)求證:CFB≌△AED;

(2)若∠ADB=90°,判斷四邊形BFDE的形狀,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家體育用品商店出售同樣的乒乓球拍和乒乓球,乒乓球拍每副定價(jià)20,乒乓球每盒定價(jià)5元,F(xiàn)兩家商店搞促銷活動(dòng),甲店的優(yōu)惠辦法是:每買一副乒乓球拍贈(zèng)一盒乒乓球;乙店的優(yōu)惠辦法是:按定價(jià)的9折出售。某班需購買乒乓球拍4,乒乓球若干盒(不少于4).

(1)用代數(shù)式表示(所填式子需化簡):

當(dāng)購買乒乓球的盒數(shù)為x盒時(shí),在甲店購買需付款 元;在乙店購買需付款 元。

(2)當(dāng)購買乒乓球盒數(shù)為10盒時(shí),若只能選擇一家商店去購買,到哪家商店購買比較合算?并說明理由。

(3)當(dāng)購買乒乓球盒數(shù)為10盒時(shí),若不限制購買的商店,請(qǐng)你給出一種更為省錢的購買方案,并求出此時(shí)需付款多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D是Rt△ABC的斜邊BC上的一點(diǎn),tanB= ,BC=3BD,CE⊥AD,則 =

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.

(1)求證:△AEC≌△BED;

(2)若∠1=42°,求∠BDE的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知A=x-2y,B=-x-4y+1.

(1)求2(A+B)-(A-B);(結(jié)果用含x,y的代數(shù)式表示

(2)當(dāng)互為相反數(shù)時(shí),求(1)中代數(shù)式的值.

查看答案和解析>>

同步練習(xí)冊答案