【題目】某酒廠每天生產A、B兩種品牌的白酒共1000瓶,A、B兩種品牌的白酒每瓶的成本和利潤如下表:

設每天生產A種品牌白酒x瓶,這兩種酒每天共獲利潤y元,

1)求出y關于x的函數(shù)表達式;

2)如果該酒廠每天對這兩種酒投入成本51000元,那么這兩種酒每天獲利多少元?

【答案】1;(227000.

【解析】

1)根據(jù)題意和表格中的數(shù)據(jù)可以求得yx的函數(shù)關系式;
2)根據(jù)題意可以求出生產AB兩種白酒各多瓶,然后根據(jù)(1)中的函數(shù)關系式即可解答本題.

1)由題意可得,
y=30x+251000-x=5x+25000
y關于x的函數(shù)表達式是y=5x+25000;
2)由題意可得,
60x+451000-x=51000
解得,x=400
1000-x=600,
∴這兩種酒每天獲利:5×400+25000=27000(元),
答:這兩種酒每天獲利27000元.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在如圖的正方形網(wǎng)格中,每一個小正方形的邊長為1.格點三角形(頂點是網(wǎng)格線交點的三角形)的頂點的坐標分別是

(1)請在圖中的網(wǎng)格平面內建立平面直角坐標系;

(2)請畫出關于軸對稱的;

(3)請在軸上求作一點,使的周長最小,并寫出點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,∠BAC=120°,AC的垂直平分線交BC于點D,垂足為E,若DE=2cm,則BD的長為_______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=ax2﹣9ax+18a的圖象與x軸交于A,B兩點(A在B的左側),圖象的頂點為C,直線AC交y軸于點D.

(1)連接BD,若∠BDO=∠CAB,求這個二次函數(shù)的表達式;

(2)是否存在以原點O為對稱軸的矩形CDEF?若存在,求出這個二次函數(shù)的表達式,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,每個小正方形的邊長為1,點A的坐標為(-3,2.請按要求分別完成下列各小題:

1)把△ABC向下平移4個單位得到△A1B1C1,畫出△A1B1C1,點A1的坐標是___.

2)畫出△ABC關于y軸對稱的△A2B2C2,則點C2的坐標是 ;

3)△ABC的面積是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與直線交于點,則______

【答案】-1

【解析】

將點A的坐標代入兩直線解析式得出關于mb的方程組,解之可得.

解:由題意知,

解得,

故答案為:

【點睛】

本題主要考查兩直線相交或平行問題,解題的關鍵是掌握兩直線的交點坐標必定同時滿足兩個直線解析式.

型】填空
束】
11

【題目】如圖,長方形紙片ABCD中,AB=4BC=6,將△ABC沿AC折疊,使點B落在點E處,CEAD于點F,則△AFC的面積等于___

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示.

(1)求這個二次函數(shù)的表達式;

(2)將該二次函數(shù)圖象向上平移   個單位長度后恰好過點(﹣2,0);

(3)觀察圖象,當﹣2<x<1時,y的取值范圍為   

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著”互聯(lián)網(wǎng)+“時代的到來,利用網(wǎng)絡呼叫專車的打車方式深受大眾歡迎.據(jù)了解,在非高峰期時,某種專車所收取的費用y(元)與行駛里程x(km)的函數(shù)圖象如圖所示.請根據(jù)圖象,回答下列問題:

(1)當x≥5時,求y與x之間的函數(shù)關系式;

(2)若王女士有一次在非高峰期乘坐這種專車外出,共付費47元,求王女士乘坐這種專車的行駛里程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校要開展校園文化藝術節(jié)活動,為了合理編排節(jié)目,對學生最喜愛的歌曲、舞蹈、小品、相聲四類節(jié)目進行了一次抽樣調查(每名學生必須選擇且只能選擇一類),并將調查結果繪制成如下不完整的統(tǒng)計圖.

請你根據(jù)圖中信息,回答下列問題:

(1)求本次調查的學生人數(shù),并補全條形統(tǒng)計圖;

(2)在扇形統(tǒng)計圖中,求歌曲所在扇形的圓心角的度數(shù);

(3)若該學校共有學生2000人,請問該學校大約有多少同學最喜愛小品節(jié)目?

查看答案和解析>>

同步練習冊答案