【題目】學(xué)習(xí)了統(tǒng)計(jì)知識(shí)后,班主任王老師叫班長就本班同學(xué)的上學(xué)方式進(jìn)行了一次調(diào)查統(tǒng)計(jì),圖1和圖2是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖,請你根據(jù)圖中提供的信息,解答以下問題:
(1)在扇形統(tǒng)計(jì)圖中,計(jì)算出“步行”部分所對(duì)應(yīng)的圓心角的度數(shù);
(2)求該班共有多少名學(xué)生;
(3)在圖1中,將表示“乘車”的部分補(bǔ)充完整.

【答案】
(1)解:(1﹣20%﹣50%)×360°=108°,

即“步行”部分所對(duì)應(yīng)的圓心角的度數(shù)是108度.


(2)解:20÷50%=40(人),即該班共有40名學(xué)生
(3)解:如圖所示.


【解析】(1)根據(jù)扇形統(tǒng)計(jì)圖的定義,各部分占總體的百分比之和為1,先求出“步行”部分所占的百分比,再乘以360°得所對(duì)應(yīng)的圓心角的度數(shù);(2)由扇形統(tǒng)計(jì)圖得知騎車人數(shù)占總?cè)藬?shù)的50%,又由頻率分布直方圖得知騎車人數(shù)為20,所以該班總?cè)藬?shù)為20÷50%=40.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A、B、C在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù)分別為a、b、c,滿足(b+5)2+|a﹣8|=0,點(diǎn)P位于該數(shù)軸上.

(1)求出a,b的值,并求A、B兩點(diǎn)間的距離;

(2)設(shè)點(diǎn)C與點(diǎn)A的距離為25個(gè)單位長度,且|ac|=﹣ac.若PB=2PC,求點(diǎn)P在數(shù)軸上對(duì)應(yīng)的實(shí)數(shù);

(3)若點(diǎn)P從原點(diǎn)開始第一次向左移動(dòng)1個(gè)單位長度,第二次向右移動(dòng)3個(gè)單位長度,第三次向左移動(dòng)5個(gè)單位長度,第四次向右移動(dòng)7個(gè)單位長度,(以此類推).則點(diǎn)p 能移動(dòng)到與點(diǎn)A或點(diǎn)B重合的位置嗎?若能,請?zhí)骄啃枰苿?dòng)多少次重合?若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于x的方程x2+2m﹣2x+m2﹣3m+3=0

1有兩個(gè)不相等的實(shí)數(shù)根m的取值范圍;

2x1x2是方程的兩根且x12+x22=6,m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD是正方形,G是BC上(除端點(diǎn)外)的任意一點(diǎn),DEAG于點(diǎn)E,BFDE,交AG于點(diǎn)F.下列結(jié)論不一定成立的是【 】

A.AED≌△BFA B.DE﹣BF=EF C.BGF∽△DAE D.DE﹣BG=FG

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
(1)求證:△ABF≌△EDF;
(2)若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2的圖象與一次函數(shù)y=x+b的圖象相交于A(﹣2,2)、B兩點(diǎn),從點(diǎn)A和點(diǎn)B分別引平行于y軸的直線與x軸分別交于C,D兩點(diǎn),點(diǎn)P(t,0),為線段CD上的動(dòng)點(diǎn),過點(diǎn)P且平行于y軸的直線與拋物線和直線分別交于R,S.

(1)求一次函數(shù)和二次函數(shù)的解析式,并求出點(diǎn)B的坐標(biāo);
(2)當(dāng)SR=2RP時(shí),計(jì)算線段SR的長;
(3)若線段BD上有一動(dòng)點(diǎn)Q且其縱坐標(biāo)為t+3,問是否存在t的值,使SBRQ=15?若存在,求t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀與理解:

如圖,一只甲蟲在5×5的方格(每個(gè)方格邊長均為1)上沿著網(wǎng)格線爬行.若我們規(guī)定:在如圖網(wǎng)格中,向上(或向右) 爬行記為“+”,向下(或向左) 爬行記為“﹣”,并且第一個(gè)數(shù)表示左右方向,第二個(gè)數(shù)表示上下方向.

例如:從AB記為:A→B(+1,+4),從DC記為:D→C(﹣1,+2).

思考與應(yīng)用:

(1)圖中A→C(   ,   ),B→C(   ,   ),D→A(   ,   

(2)若甲蟲從AP的行走路線依次為:(+3,+2)→(+1,+3)→(+1,﹣2),請?jiān)趫D中標(biāo)出P的位置.

(3)若甲蟲的行走路線為A→(+1,+4)→(+2,0)→(+1,﹣2)→(﹣4,﹣2),請計(jì)算該甲蟲走過的總路程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解不等式組 并寫出它的所有非負(fù)整數(shù)解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì), 定義一種新運(yùn)算,規(guī)定 (其中, 均為非零常數(shù)),這里等式右邊是通常的四則運(yùn)算,例: .

已知 .

(1), 的值;

(2)若關(guān)于m的不等式組恰好有3個(gè)整數(shù)解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案