【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(0,a),B(b,a),且a、b滿足(a﹣2)2+|b﹣4|=0,現(xiàn)同時(shí)將點(diǎn)A,B分別向下平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,連接AC,BD,AB.
(1)求點(diǎn)C,D的坐標(biāo)及四邊形ABDC的面積S四邊形ABCD;
(2)在y軸上是否存在一點(diǎn)M,連接MC,MD,使S△MCD=S四邊形ABDC?若存在這樣一點(diǎn),求出點(diǎn)M的坐標(biāo),若不存在,試說明理由;
(3)點(diǎn)P是直線BD上的一個(gè)動(dòng)點(diǎn),連接PA,PO,當(dāng)點(diǎn)P在BD上移動(dòng)時(shí)(不與B,D重合),直接寫出∠BAP、∠DOP、∠APO之間滿足的數(shù)量關(guān)系.
【答案】(1)8;(2)M(0,2)或(0,﹣2);(3)①∠APO=∠DOP+∠BAP;②∠DOP=∠BAP+∠APO;③∠BAP=∠DOP+∠APO.
【解析】
(1)先由非負(fù)數(shù)性質(zhì)求出a=2,b=4,再根據(jù)平移規(guī)律,得出點(diǎn)C,D的坐標(biāo),然后根據(jù)四邊形ABDC的面積=AB×OA即可求解;
(2)存在.設(shè)M坐標(biāo)為(0,m),根據(jù)S△PAB=S四邊形ABDC,列出方程求出m的值,即可確定M點(diǎn)坐標(biāo);
(3)分三種情況求解:①當(dāng)點(diǎn)P在線段BD上移動(dòng)時(shí),②當(dāng)點(diǎn)P在DB的延長線上時(shí),③當(dāng)點(diǎn)P在BD的延長線上時(shí).
解:(1)∵(a﹣2)2+|b﹣4|=0,
∴a=2,b=4,
∴A(0,2),B(4,2).
∵將點(diǎn)A,B分別向下平移2個(gè)單位,再向左平移1個(gè)單位,分別得到點(diǎn)A,B的對應(yīng)點(diǎn)C,D,
∴C(﹣1,0),D(3,0).
∴S四邊形ABDC=AB×OA=4×2=8;
(2)在y軸上存在一點(diǎn)M,使S△MCD=S四邊形ABCD.設(shè)M坐標(biāo)為(0,m).
∵S△MCD=S四邊形ABDC,
∴×4|m|=4,
∴2|m|=4,
解得m=±2.
∴M(0,2)或(0,﹣2);
(3)①當(dāng)點(diǎn)P在線段BD上移動(dòng)時(shí),∠APO=∠DOP+∠BAP
理由如下:
過點(diǎn)P作PE∥AB交OA于E.
∵CD由AB平移得到,則CD∥AB,
∴PE∥CD,
∴∠BAP=∠APE,∠DOP=∠OPE,
∴∠BAP+∠DOP=∠APE+∠OPE=∠APO,
②當(dāng)點(diǎn)P在DB的延長線上時(shí),同①的方法得,∠DOP=∠BAP+∠APO;
③當(dāng)點(diǎn)P在BD的延長線上時(shí),同①的方法得,∠BAP=∠DOP+∠APO.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有兩點(diǎn),之間的距離為1,點(diǎn)與原點(diǎn)的距離為3,則所有滿足條件的點(diǎn)與原點(diǎn)的距離的和為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店進(jìn)行店慶活動(dòng),決定購進(jìn)甲、乙兩種紀(jì)念品,若購進(jìn)甲種紀(jì)念品1件,乙種紀(jì)念品2件,需要160元;購進(jìn)甲種紀(jì)念品2件,乙種紀(jì)念品3件,需要280元.
(1)購進(jìn)甲乙兩種紀(jì)念品每件各需要多少元?
(2)該商場決定購進(jìn)甲乙兩種紀(jì)念品100件,并且考慮市場需求和資金周轉(zhuǎn),用于購買這些紀(jì)念品的資金不少于6300元,同時(shí)又不能超過6430元,則該商場共有幾種進(jìn)貨方案?
(3)若銷售每件甲種紀(jì)念品可獲利30元,每件乙種紀(jì)念品可獲利12元,在第(2)問中的各種進(jìn)貨方案中,哪種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△中,,分別是邊,上的點(diǎn),且,,交于點(diǎn),的延長線交于點(diǎn),若,則圖中的全等三角形共有( )
A.4對B.5對C.6對D.7對
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中給定以下五個(gè)點(diǎn)A(-2,0),B(1,0),C(4,0),D,E(0,-6),從這五個(gè)點(diǎn)中選取三點(diǎn),使經(jīng)過三點(diǎn)的拋物線滿足以y軸的平行線為對稱軸.我們約定經(jīng)過A,B,E三點(diǎn)的拋物線表示為拋物線ABE.
(1)符合條件的拋物線共有多少條?不求解析式,請用約定的方法一一表示出來.
(2)在五個(gè)形狀、顏色、質(zhì)量完全相同的乒乓球上標(biāo)上A,B,C,D,E代表以上五個(gè)點(diǎn),玩摸球游戲,每次摸三個(gè)球.請問:摸一次,三球代表的點(diǎn)恰好能確定一條符合條件的拋物線的概率是多少?
(3)小強(qiáng)、小亮用上面的五球玩游戲,若符合要求的拋物線開口向上,小強(qiáng)可以得1分;若拋物線開口向下,小亮得5分,你認(rèn)為這個(gè)游戲誰獲勝的可能性大一些?說說你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD∥BC,∠EAD=∠C.
(1)試判斷AE與CD的位置關(guān)系,并說明理由;
(2)若∠FEC=∠BAE,∠EFC=50°,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線l1經(jīng)過(2,3)和(﹣1,﹣3),直線l2經(jīng)過原點(diǎn)O,且與直線l1交于點(diǎn)P(﹣2,a).
(1)求a的值;
(2)(﹣2,a)可看成怎樣的二元一次方程組的解?
(3)設(shè)直線l1與y軸交于點(diǎn)A,你能求出△APO的面積嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全等三角形又叫做合同三角形,平面內(nèi)的合同三角形分為真正合同三角形與鏡面合同三角形,假設(shè)△ABC和△A1B1C1是全等(合同)三角形,點(diǎn)A與點(diǎn)A1對應(yīng),點(diǎn)B與點(diǎn)B1對應(yīng),點(diǎn)C與點(diǎn)C1對應(yīng),當(dāng)沿周界A→B→C→A,及A1→B1→C1→A1環(huán)繞時(shí),若運(yùn)動(dòng)方向相同,則稱它們是真正合同三角形 如圖,若運(yùn)動(dòng)方向相反,則稱它們是鏡面合同三角形 如圖,兩個(gè)真正合同三角形都可以在平面內(nèi)通過平移或旋轉(zhuǎn)使它們重合,兩個(gè)鏡面合同三角形要重合,則必須將其中一個(gè)翻轉(zhuǎn)180° 如圖,下列各組合同三角形中,是鏡面合同三角形的是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰△ABC中,AB=AC,點(diǎn)D是AC上一動(dòng)點(diǎn),點(diǎn)E在BD的延長線上,且AB=AE,AF平分∠CAE交DE于F.
(1)如圖1,連CF,求證:∠ABE=∠ACF;
(2)如圖2,當(dāng)∠ABC=60°時(shí),求證:AF+EF=FB;
(3)如圖3,當(dāng)∠ABC=45°時(shí),若BD平分∠ABC,求證:BD=2EF.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com