【題目】在平面直角坐標(biāo)系xOy中,定義直線y=ax+b為拋物線y=ax2+bx的特征直線,C(a,b)為其特征點.設(shè)拋物線y=ax2+bx與其特征直線交于A、B兩點(點A在點B的左側(cè)).

(1)當(dāng)點A的坐標(biāo)為(0,0),點B的坐標(biāo)為(1,3)時,特征點C的坐標(biāo)為


(2)若拋物線y=ax2+bx如圖所示,請在所給圖中標(biāo)出點A、點B的位置;
(3)設(shè)拋物線y=ax2+bx的對稱軸與x軸交于點D,其特征直線交y軸于點E,點F的坐標(biāo)為(1,0),DE∥CF.
①若特征點C為直線y=﹣4x上一點,求點D及點C的坐標(biāo)
②若<tan∠ODE<2,則b的取值范圍是

【答案】
(1)(3,0)
(2)

解:聯(lián)立直線y=ax+b與拋物線y=ax2+bx,

得:ax2+(b﹣a)x﹣b=0,

∴(ax+b)(x﹣1)=0,

解得:x=﹣,x=1,

∴A(1,a+b),B(﹣,0).

點A、點B的位置如圖所示;


(3)點D的坐標(biāo)為(2,0).點F的坐標(biāo)為(1,0);0<b≤
【解析】(1)根據(jù)點A、B求出直線解析式,得到a、b值,即可寫出點C坐標(biāo);
(2)聯(lián)立直線與拋物線解析式,即可求出點A(1,a+b),B(﹣ , 0),根據(jù)圖象描出兩點即可;
(3)求出點D坐標(biāo),根據(jù)點F、C、E坐標(biāo)及平行四邊形性質(zhì),即可求出特征點C的坐標(biāo),根據(jù)已知和已證得:C(a,b),E(0,b),F(xiàn)(1,0),D(﹣ , 0),由CEDF平行四邊形性質(zhì)可以得出b關(guān)于a的函數(shù)關(guān)系式,利用已知<tan∠ODE<2求出a的取值范圍,進而求出b的取值范圍;

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知BC∥GE,AF∥DE,∠1=56°.

(1)求AFG的度數(shù);

(2)若AQ平分FAC,交BC于點Q,且Q=14°,求ACB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,圖象(折線OEFPMN)描述了某汽車在行駛過程中速度與時間的函數(shù)關(guān)系,下列說法中錯誤的是( )

A. 3分時汽車的速度是40千米/

B. 12分時汽車的速度是0千米/

C. 從第3分到第6分,汽車行駛了120千米

D. 從第9分到第12分,汽車的速度從60千米/時減少到0千米/

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=45°,點M,N在邊OA上,OM=3,ON=7,點P是直線OB上的點,要使點P,M,N構(gòu)成等腰三角形的點P有(  )個.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,邊長為2的正方形ABCD在第一象限內(nèi),ABx軸,點A的坐標(biāo)為(5,3),己知直線l:y= x﹣2

(1)將直線l向上平移m個單位,使平移后的直線恰好經(jīng)過點A,求m的值

(2)在(1)的條件下,平移后的直線與正方形的邊長BC交于點E,求ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖①,點O為直線AB上一點,過點O作射線OC,使∠AOC=120°,將一直角三角板的直角頂點放在點O處,一邊OM在射線OB上,另一邊ON在直線AB的下方.

(1)將圖①中的三角板OMN擺放成如圖②所示的位置,使一邊OM在∠BOC的內(nèi)部,當(dāng)OM平分∠BOC時,∠BON=   ;(直接寫出結(jié)果)

(2)在(1)的條件下,作線段NO的延長線OP(如圖③所示),試說明射線OP是∠AOC的平分線;

(3)將圖①中的三角板OMN擺放成如圖④所示的位置,請?zhí)骄俊?/span>NOC與∠AOM之間的數(shù)量關(guān)系.(直接寫出結(jié)果,不須說明理由)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,⊙P與y軸相切于點C,⊙P的半徑是4,直線y=x被⊙P截得的弦AB的長為4 , 求點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰梯形ABCD中,AD∥BC,過點D作DF⊥BC于F.若AD=2,BC=4,DF=2,則DC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在ABCD中,延長DA到點E,延長BC到點F,使得AE=CF,連接EF,分別交AB,CD于點M,N,連接DM,BN.

(1)求證:△AEM≌△CFN;
(2)求證:四邊形BMDN是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案