精英家教網 > 初中數學 > 題目詳情

【題目】如圖,已知BC∥GE,AF∥DE,∠1=56°.

(1)求AFG的度數;

(2)若AQ平分FAC,交BC于點Q,且Q=14°,求ACB的度數.

【答案】(1)56°,(2)84°.

【解析】

(1)先根據BCEG得出∠E=1=56°,再由AFDE可知∠AFG=E=56°;

(2)作AMBC,由平行線的傳遞性可知AMEG,故∠FAM=AFG,再根據AMBC可知∠QAM=Q,故∠FAQ=FAM+QAM,再根據AQ平分∠FAC可知∠MAC=QAC+QAM=84°,根據AMBC即可得出結論.

(1)BCEG,

∴∠E=1=56°.

AFDE,

∴∠AFG=E=56°;

(2)作AMBC,

BCEG,

AMEG,

∴∠FAM=AFG=56°.

AMBC,

∴∠QAM=Q=14°,

∴∠FAQ=FAM+QAM=70°.

AQ平分∠FAC,

∴∠QAC=FAQ=70°,

∴∠MAC=QAC+QAM=84°.

AMBC,

∴∠ACB=MAC=84°.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,∠C=120°,AD=2AB=4,點H、G分別是邊CD、BC上的動點.連接AH、HG,點EAH的中點,點FGH的中點,連接EF.則EF的最大值與最小值的差為( )

A. 1 B. ﹣1 C. D. 2﹣

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖AOCBOC互余,OD平分BOC,EOC2∠AOE

1)若AOD75°,AOE的度數

2)若DOE54°,EOC的度數

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知:AD平分∠CAE,AD∥BC.

(1)求證:△ABC是等腰三角形.

(2)當∠CAE等于多少度時△ABC是等邊三角形?證明你的結論.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面推理過程

如圖,已知DEBC,DFBE分別平分∠ADE、ABC,可推得∠FDE=DEB的理由:

DEBC(已知)

∴∠ADE=      .(       

DF、BE分別平分∠ADE、ABC,

∴∠ADF=      ,

ABE=      .(       

∴∠ADF=ABE

DF    .(       

∴∠FDE=DEB. (      

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,⊙C的半徑為r,點P是與圓心C不重合的點,給出如下定義:若點P′為射線CP上一點,滿足CPCP′=r2 , 則稱點P′為點P關于⊙C的反演點.右圖為點P及其關于⊙C的反演點P′的示意圖.

(1)如圖1,當⊙O的半徑為1時,分別求出點M(1,0),N(0,2),T()關于⊙O的反演點M′,N′,T′的坐標;
(2)如圖2,已知點A(1,4),B(3,0),以AB為直徑的⊙G與y軸交于點C,D(點C位于點D下方),E為CD的中點.
①若點O,E關于⊙G的反演點分別為O′,E′,求∠E′O′G的大小;
②若點P在⊙G上,且∠BAP=∠OBC,設直線AP與x軸的交點為Q,點Q關于⊙G的反演點為Q′,請直接寫出線段GQ′的長度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCO的邊OA、OC在坐標軸上,點B坐標為(6,6),將正方形ABCO繞點C逆時針旋轉角度α(0°<α<90°),得到正方形CDEF,ED交線段AB于點G,ED的延長線交線段OA于點H,連CH、CG.

(1)求證:CBG≌△CDG;

(2)求HCG的度數;并判斷線段HG、OH、BG之間的數量關系,說明理由;

(3)連結BD、DA、AE、EB得到四邊形AEBD,在旋轉過程中,四邊形AEBD能否為矩形?如果能,請求出點H的坐標;如果不能,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,點C,E,F,B在同一直線上,點A,DBC異側,AB∥CD,AE=DF,∠A=∠D.

(1)求證:AB=CD;

(2)若AB=CF,∠B=30°,求∠D的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系xOy中,定義直線y=ax+b為拋物線y=ax2+bx的特征直線,C(a,b)為其特征點.設拋物線y=ax2+bx與其特征直線交于A、B兩點(點A在點B的左側).

(1)當點A的坐標為(0,0),點B的坐標為(1,3)時,特征點C的坐標為


(2)若拋物線y=ax2+bx如圖所示,請在所給圖中標出點A、點B的位置;
(3)設拋物線y=ax2+bx的對稱軸與x軸交于點D,其特征直線交y軸于點E,點F的坐標為(1,0),DE∥CF.
①若特征點C為直線y=﹣4x上一點,求點D及點C的坐標 ;
②若<tan∠ODE<2,則b的取值范圍是

查看答案和解析>>

同步練習冊答案