【題目】已知在平面直角坐標系xOy中,直線l1分別交x軸和y軸于點A(3,0),B(0,3)

1)如圖1,已知⊙P經(jīng)過點O,且與直線l1相切于點B,求⊙P的直徑長;

2)如圖2,已知直線l2y=3x3分別交x軸和y軸于點C和點D,點Q是直線l2上的一個動點,以Q為圓心,2為半徑畫圓.

①當點Q與點C重合時,求證:直線l1與⊙Q相切;

②設⊙Q與直線l1相交于MN兩點,連結(jié)QMQN.問:是否存在這樣的點Q,使得QMN是等腰直角三角形,若存在,求出點Q的坐標;若不存在,請說明理由.

【答案】13;(2)①見解析,②存在,Q13–6–3)和Q23+,6+3

【解析】

1)證明△ABC為等腰直角三角形,則⊙P的直徑長=BC=AB,即可求解;
2)過點CCE⊥AB于點E,證明CE=ACsin45°=4×=2=圓的半徑,即可求解;
3)分點M、N在兩條直線交點的下方、點M、N在兩條直線交點的上方兩種情況,分別求解即可.

證明:(1)如圖1,連接BC,

∵∠BOC=90°,∴點PBC上,

∵⊙P與直線l1相切于點B,

∴∠ABC=90°,而OA=OB,

∴△ABC為等腰直角三角形,

則⊙P的直徑長=BC=AB=3;

2)①過點CCEAB于點E,如圖2.

y=0代入y=3x–3,得x=1,

∴點C的坐標為(1,0.AC=4,

∵∠CAE=45°,∴CE=AC=2,

∵點Q與點C重合,又⊙Q的半徑為2,

直線l1與⊙Q相切.

②假設存在這樣的點Q,使得QMN是等腰直角三角形,

∵直線l1經(jīng)過點A–30),B0,3),

l1的函數(shù)解析式為y=x+3

記直線l2l1的交點為F,

情況一:

當點Q在線段CF上時,由題意,得∠MNQ=45°,

延長NQx軸于點G,如圖3,

∵∠BAO=45°,

∴∠NGA=180°–45°–45°=90°

NGx軸,∴點QN有相同的橫坐標,

Qm,3m–3),則Nm,m+3),

QN=m+3–3m–3),

∵⊙Q的半徑為2

m+3–3m–3=2,解得m=3–,

3m–3=6–3,

Q的坐標為(3–,6–3.

情況二:

當點Q在線段CF的延長線上時,如圖4,

同理可得m=3+,

Q的坐標為(3+6+3.

∴存在這樣的點Q1(3–,6–3)Q2(3+,6+3),使得QMN是等腰直角三角形.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】小明在一次打籃球時籃球傳出后的運動路線為如圖所示的拋物線,以小明所站立的位置為原點O建立平面直角坐標系,籃球出手時在O點正上方1m處的點P.已知籃球運動時的高度y(m)與水平距離x(m)之間滿足函數(shù)表達式y=-x2+x+c.

1求y與x之間的函數(shù)表達式;

2球在運動的過程中離地面的最大高度

3小亮手舉過頭頂,跳起后的最大高度為BC=2.5m若小亮要在籃球下落過程中接到球,求小亮離小明的最短距離OB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,的直角頂點軸的正半軸上,頂點在第一象限,函數(shù)的圖象與邊交于點,并且點為邊的中點.若的面積為12,則的值為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知拋一枚質(zhì)地均勻的硬幣正面朝上的概率為,下列說法正確的是(

A.連續(xù)拋一枚均勻硬幣2次必有1次正面朝上

B.連續(xù)拋一枚均勻硬幣5次,正面都朝上是不可能事件

C.大量反復拋一枚均勻硬幣,平均每100次出現(xiàn)正面朝上50

D.通過拋一枚均勻硬幣確定誰先發(fā)球的比賽規(guī)則是公平的

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD中,對角線AC、BD相交于點O,AOOCBOOD,且∠AOB2∠OAD.

(1)求證:四邊形ABCD是矩形;

(2)∠AOB∶∠ODC4∶3,求∠ADO的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市為創(chuàng)建全國文明城市,開展“美化綠化城市”活動,計劃經(jīng)過若干年使城區(qū)綠化總面積新增360萬平方米.自2013年初開始實施后,實際每年綠化面積是原計劃的1.6倍,這樣可提前4年完成任務.

(1)問實際每年綠化面積多少萬平方米?

(2)為加大創(chuàng)城力度,市政府決定從2016年起加快綠化速度,要求不超過2年完成,那么實際平均每年綠化面積至少還要增加多少萬平方米?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,中,點在邊上,,,垂直于的延長線于點,,則邊的長為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20201月份,某藥店計劃購進一批甲、乙兩種型號的口罩,已知一袋甲種口罩的進價與一袋乙種口罩的進價和為40元,用90元購進甲種口罩的袋數(shù)與用150元購進乙種口罩的袋數(shù)相同.求每袋甲種、乙種口罩的進價分別是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2017河北2410分)如圖,直角坐標系中,,直線軸交于點,直線軸及直線分別交于點,,點,關(guān)于軸對稱,連接.

1)求點的坐標及直線的解析式;

2)設面積的和,求的值;

3)在求(2)中時,嘉琪有個想法:沿軸翻折到的位置,而與四邊形拼接后可看成,這樣求便轉(zhuǎn)化為直接求的面積不更快捷嗎?但大家經(jīng)反復驗算,發(fā)現(xiàn),請通過計算解釋他的想法錯在哪里.

查看答案和解析>>

同步練習冊答案