【題目】2017河北2410分)如圖,直角坐標(biāo)系中,,直線軸交于點(diǎn),直線軸及直線分別交于點(diǎn),,點(diǎn),關(guān)于軸對(duì)稱,連接.

1)求點(diǎn),的坐標(biāo)及直線的解析式;

2)設(shè)面積的和,求的值;

3)在求(2)中時(shí),嘉琪有個(gè)想法:沿軸翻折到的位置,而與四邊形拼接后可看成,這樣求便轉(zhuǎn)化為直接求的面積不更快捷嗎?但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn),請(qǐng)通過計(jì)算解釋他的想法錯(cuò)在哪里.

【答案】1,,;(2;(3)他的想法錯(cuò)在將與四邊形拼接后看成了.

【解析】

解:(1)把代入,得,

點(diǎn)坐標(biāo)為

代入,得,

點(diǎn)坐標(biāo)為,

點(diǎn),關(guān)于軸對(duì)稱,

點(diǎn)坐標(biāo)為

設(shè)直線的解析式為,則

解得,

直線的解析式為;

2)由(1)可得,,,

,四邊形,

3當(dāng)時(shí),

點(diǎn)不在直線上,即,三點(diǎn)不共線,

他的想法錯(cuò)在將與四邊形拼接后看成了.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在平面直角坐標(biāo)系xOy中,直線l1分別交x軸和y軸于點(diǎn)A(3,0),B(0,3)

1)如圖1,已知⊙P經(jīng)過點(diǎn)O,且與直線l1相切于點(diǎn)B,求⊙P的直徑長;

2)如圖2,已知直線l2y=3x3分別交x軸和y軸于點(diǎn)C和點(diǎn)D,點(diǎn)Q是直線l2上的一個(gè)動(dòng)點(diǎn),以Q為圓心,2為半徑畫圓.

①當(dāng)點(diǎn)Q與點(diǎn)C重合時(shí),求證:直線l1與⊙Q相切;

②設(shè)⊙Q與直線l1相交于M,N兩點(diǎn),連結(jié)QMQN.問:是否存在這樣的點(diǎn)Q,使得QMN是等腰直角三角形,若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在矩形中,,動(dòng)點(diǎn),分別從點(diǎn),點(diǎn)同時(shí)以每秒1個(gè)單位長度的速度出發(fā),且分別在邊上沿,的方向運(yùn)動(dòng),當(dāng)點(diǎn)運(yùn)動(dòng)到點(diǎn)時(shí),兩點(diǎn)同時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為,連接,過點(diǎn),與邊相交于點(diǎn),連接

1)如圖2,當(dāng)時(shí),延長交邊于點(diǎn).求證:

2)在(1)的條件下,試探究線段三者之間的等量關(guān)系,并加以證明;

3)如圖3,當(dāng)時(shí),延長交邊于點(diǎn),連接,若平分,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AOBACD均為正三角形,且頂點(diǎn)BD均在雙曲線x0)上,若圖中SOBP4,則k的值為(

A.B.C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,點(diǎn)E在正方形ABCD的內(nèi)部,且EBEC,過點(diǎn)E畫一條射線平分BEC

2)如圖②,在ABC 中,DEBC,EFAB,請(qǐng)僅用直尺(無刻度)作一個(gè)三角形,使所作三角形的面積等于ABC 面積的一半并把所作的三角形用陰影表示出來.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線y=x2﹣2x+c(c為常數(shù))的對(duì)稱軸如圖所示,且拋物線過點(diǎn)C(0,c).

(1)當(dāng)c=﹣3時(shí),點(diǎn)(x1,y1)在拋物線y=x2﹣2x+c上,求y1的最小值;

(2)若拋物線與x軸有兩個(gè)交點(diǎn),自左向右分別為點(diǎn)A、B,且OA=OB,求拋物線的解析式;

(3)當(dāng)﹣1<x<0時(shí),拋物線與x軸有且只有一個(gè)公共點(diǎn),求c的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,2×2網(wǎng)格(每個(gè)小正方形的邊長為1)中有A,B,C,D,E,F,G,H,O九個(gè)格點(diǎn).拋物線l的解析式為y=(-1)nx2+bx+c(n為整數(shù)).

(1)n為奇數(shù),且l經(jīng)過點(diǎn)H(0,1)C(2,1),求b,c的值,并直接寫出哪個(gè)格點(diǎn)是該拋物線上的頂點(diǎn);

(2)n為偶數(shù),且l經(jīng)過點(diǎn)A(10)B(2,0),通過計(jì)算說明點(diǎn)F(0,2)H(0,1)是否在拋物線上;

(3)l經(jīng)過這九個(gè)格點(diǎn)中的三個(gè),直接寫出滿足這樣條件的拋物線條數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了解全校學(xué)生對(duì)新聞、體育、動(dòng)畫、娛樂、戲曲五類電視節(jié)目的喜愛情況,隨機(jī)選取該校部分學(xué)生進(jìn)行調(diào)查,要求每名學(xué)生從中只選一類最喜愛的電視節(jié)目,以下是根據(jù)調(diào)查結(jié)果繪制的統(tǒng)計(jì)圖表的一部分.

類別

A

B

C

D

E

節(jié)目類型

新聞

體育

動(dòng)畫

娛樂

戲曲

人數(shù)

12

30

m

54

9

請(qǐng)你根據(jù)以上的信息,回答下列問題:

1)被調(diào)查的學(xué)生中,最喜愛體育節(jié)目的有   人,這些學(xué)生數(shù)占被調(diào)查總?cè)藬?shù)的百分比為   %

2)被調(diào)查學(xué)生的總數(shù)為   人,統(tǒng)計(jì)表中m的值為   ,統(tǒng)計(jì)圖中n的值為   

3)在統(tǒng)計(jì)圖中,E類所對(duì)應(yīng)扇形圓心角的度數(shù)為   

4)該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校最喜愛新聞節(jié)目的學(xué)生數(shù).

查看答案和解析>>

同步練習(xí)冊答案