①3
3
+
2
-2
2
-2
3
;
1
2
3
÷
2
1
3
×
1
2
5
;
③(
2
-
3
2+2
1
3
×3
2
;
④(3
2
+2
3
)(3
2
-2
3
).
考點:二次根式的混合運算
專題:計算題
分析:①直接合并同類二次根式即可;
②先把帶分?jǐn)?shù)化為假分?jǐn)?shù),然后根據(jù)二次根式的乘除法則運算;
③根據(jù)完全平方公式和二次根式的乘法法則運算;
④根據(jù)平方差公式計算.
解答:解:①原式=
3
-
2
;
②原式=
5
3
×
3
7
×
7
5
=1;
③原式=2-2
6
+3+2×
3
3
×3
2
=2-2
6
+3+2
6
=5;
④原式=(3
2
2-(2
3
2=18-12=6.
點評:本題考查了二次根式的混合運算:先把各二次根式化為最簡二次根式,再進行二次根式的乘除運算,然后合并同類二次根式.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,圓錐的側(cè)面積恰好等于其底面積的2倍,則該圓錐側(cè)面展開圖所對應(yīng)扇形圓心角的度數(shù)為(  )
A、180°B、90°
C、120°D、60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

若經(jīng)過三角形某一個頂點的一條直線可把它分成兩個小等腰三角形,那么我們稱該三角形為等腰三角形的生成三角形,簡稱生成三角形.
(1)如圖,已知等腰直角三角形ABC,∠A=90°.求證:△ABC是生成三角形;
(2)若等腰△DEF有一個內(nèi)角等于36°,那么請你畫出簡圖說明△DEF是生成三角形.(要求畫出直線,標(biāo)注出圖中等腰三角形的頂角、底角的度數(shù))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,方格紙中每個小方格都是邊長為1個單位長度的正方形,在建立平面直角坐標(biāo)系后,△ABC的頂點在格點上.且A(1,-4),B(5,-4),C(4,-1)
(1)求出△ABC的面積;
(2)若把△ABC向上平移2個單位長度,再向左平移4個單位長度得到△A′B′C′,在圖中畫出△A′B′C′,并寫出B′的坐標(biāo);
(3)求邊AC在這一過程中所掃過的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC中,CA=CB,∠ACB=90°,D為△ABC外一點,且AD⊥BD,BD交AC于E,G為BC上一點,且∠BCG=∠DCA,過G點作GH⊥CG交CB于H.
(1)求證:CD=CG;
(2)若AD=CG,求證:AB=AC+CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

[背景資料]
低碳生活的理念已逐步被人們接受.據(jù)相關(guān)資料統(tǒng)計:
一個人平均一年節(jié)約的用電,相當(dāng)于減排二氧化碳約18kg;
一個人平均一年少買的衣服,相當(dāng)于減排二氧化碳約6kg.
[問題解決]
某市2010年二氧化碳人均排放量為1000kg,2010年到2012年每年以相同的百分率增長,到了2012年達到了人均排放量1210kg,2012年開始,該市中甲、乙兩校分別對本校師生提出“節(jié)約用電”、“少買衣服”的倡議,2012年兩校響應(yīng)本校倡議的人數(shù)共60人,因此而減排二氧化碳總量為600kg.
(1)該市2010年到2012年二氧化碳排放量增長的百分率是多少?
(2)2012年兩校響應(yīng)本校倡議的人數(shù)分別是多少?
(3)2012年到20114年,甲校響應(yīng)本校倡議的人數(shù)每年增加相同的數(shù)量;乙校響應(yīng)本校倡議的人數(shù)每年按相同的百分率增長.2013年乙校響應(yīng)本校倡議的人數(shù)是甲校響應(yīng)本校倡議人數(shù)的2倍;2014年兩校響應(yīng)本校倡議的總?cè)藬?shù)比2013年兩校響應(yīng)本校倡議的總?cè)藬?shù)多100人.求2014年兩校響應(yīng)本校倡議減排二氧化碳的總量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

計算:
(1)
(-3)2
+(
2
+1)(
2
-1)+
2
18
;
(2)
18
-4
1
2
+
24
÷
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

求下列各式中的x的值.
(1)9x2-49=0;                     
(2)(x+1)3=-27.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠1=∠2,CE∥BD.求證:AB∥CF.

查看答案和解析>>

同步練習(xí)冊答案