如圖,半徑為2的⊙C與x軸的正半軸交于點(diǎn)A,與y軸的正半軸交于點(diǎn)B,點(diǎn)C的坐標(biāo)為(1,0).若拋物線y=-
3
3
x2+bx+c過A、B兩點(diǎn).
(1)求拋物線的解析式;
(2)在拋物線上是否存在點(diǎn)P,使得∠PBO=∠POB?若存在,求出點(diǎn)P的坐標(biāo);若不存在說明理由;
(3)若點(diǎn)M是拋物線(在第一象限內(nèi)的部分)上一點(diǎn),△MAB的面積為S,求S的最大(。┲担
考點(diǎn):二次函數(shù)綜合題
專題:
分析:(1)利用待定系數(shù)法求拋物線的解析式.因?yàn)橐阎狝(3,0),所以需要求得B點(diǎn)坐標(biāo).如答圖1,連接OB,利用勾股定理求解;
(2)由∠PBO=∠POB,可知符合條件的點(diǎn)在線段OB的垂直平分線上.如答圖2,OB的垂直平分線與拋物線有兩個(gè)交點(diǎn),因此所求的P點(diǎn)有兩個(gè),注意不要漏解;
(3)如答圖3,作MH⊥x軸于點(diǎn)H,構(gòu)造梯形MBOH與三角形MHA,求得△MAB面積的表達(dá)式,這個(gè)表達(dá)式是關(guān)于M點(diǎn)橫坐標(biāo)的二次函數(shù),利用二次函數(shù)的極值求得△MAB面積的最大值.
解答:解:(1)如答圖1,連接CB.
∵BC=2,OC=1
∴OB=
3
,
∴B(0,
3

將A(3,0),B(0,
3
)代入二次函數(shù)的表達(dá)式
-
3
3
×9+3b+c=0
c=
3
,解得
b=
2
3
3
c=
3
,
∴y=-
3
3
x2+
2
3
3
x+
3


(2)存在.
如答圖2,作線段OB的垂直平分線l,與拋物線的交點(diǎn)即為點(diǎn)P1,P2
∵B(0,
3
),O(0,0),
∴直線l的表達(dá)式為y=
3
2
.代入拋物線的表達(dá)式,
3
2
=-
3
3
x2+
2
3
3
x+
3
.;
解得x1=1+
10
2
或x2=1-
10
2

∴P1(1-
10
2
,
3
2
)或P2(1+
10
2
,
3
2
).

(3)如答圖3,作MH⊥x軸于點(diǎn)H.
設(shè)M(xm,ym),
則S△MAB=S梯形MBOH+S△MHA-S△OAB
=
1
2
(MH+OB)•OH+
1
2
HA•MH-
1
2
OA•OB
=
1
2
(ym+
3
)xm+
1
2
(3-xm)ym-
1
2
×3×
3
=
3
2
xm+
3
2
ym-
3
2
,
∵ym=-
3
3
xm2+
2
3
3
xm+
3
,
∴S△MAB=
3
2
xm+
3
2
(-
3
3
xm2+
2
3
3
xm+
3
)-
3
2
=
3
2
xm2+
3
2
xm
=
3
2
(xm-
3
2
2+
9
8
,
∴當(dāng)xm=
3
2
時(shí),S△MAB取得最大值,最大值為
9
8
點(diǎn)評:本題是二次函數(shù)綜合題,重點(diǎn)考查二次函數(shù)相關(guān)性質(zhì)、圓的性質(zhì)、垂直平分線/勾股定理、面積求法等知識點(diǎn).第(2)問中注意垂直平分線與拋物線的交點(diǎn)有兩個(gè),不要漏解;第(3)問中,重點(diǎn)關(guān)注圖形面積的求法以及求極值的方法.本題考查知識點(diǎn)較多,要求同學(xué)們對所學(xué)知識要做到理解深刻、融會貫通、靈活運(yùn)用,如此方能立于不敗之地.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

為做好房地產(chǎn)市場調(diào)控工作,同時(shí)為中低收入階層提供基本住房保障,住建部通知,2014年全國將新開工保障房6000000套以上,將數(shù)字6000000用科學(xué)記數(shù)法表示為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

小明同學(xué)在“百度”搜索引擎中輸入“中國夢”,搜索到相關(guān)的結(jié)果約為8950000個(gè),這個(gè)數(shù)用科學(xué)記數(shù)法表示為( 。
A、8.95×107
B、89.5×106
C、8.95×106
D、0.895×107

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)計(jì)算:|-4|-
9
+(-2)0
;
(2)先化簡,再求值:(1+a)(1-a)+(a-2)2,其中a=-3.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知函數(shù)y=
1
2
x2+bx+c的圖象與x軸交于A、B兩點(diǎn),交y軸于點(diǎn)C,已知點(diǎn)A(4,0)和點(diǎn)C(0,2).
(1)求該拋物線的對稱軸,頂點(diǎn)坐標(biāo)及OB的長;
(2)若點(diǎn)E(x,y)是拋物線上的一個(gè)動點(diǎn),且位于第四 象限,四邊形OEAF是以O(shè)A為對角線的平行四邊形.
①若平行四邊形OEAF的面積為S,試求S與x之間的函數(shù)解析式,并寫出自變量x的取值范圍;
②當(dāng)點(diǎn)E的坐標(biāo)為
 
時(shí),四邊形OEAF為菱形(直接寫出結(jié)果).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=ax2+bx+c經(jīng)過A(3,0)、B(0,3)、C(1,0)三點(diǎn).
(1)求拋物線的解析式;
(2)若點(diǎn)D的坐標(biāo)為(-1,0),在直線AB上有一點(diǎn)P,使△ABO與△ADP相似,求出點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,在x軸下方的拋物線上,是否存在點(diǎn)E,使△ADE的面積等于四邊形APCE的面積?如果存在,請求出點(diǎn)E的坐標(biāo);如果不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖⊙O是△ABC的外接圓,P為圓外一點(diǎn),PA∥BC,且A為劣弧
BC
的中點(diǎn),割線PBD過圓心,交⊙0于另一點(diǎn)D,連結(jié)CD.
(1)試判斷直線PA與⊙0的位置關(guān)系,并證明你的結(jié)論.
(2)當(dāng)AB=13,BC=24時(shí),求⊙O的半徑及CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(1)已知關(guān)于x的分式方程
a
x-2
=1的解為x=1,求a的值;
(2)根據(jù)(1)的結(jié)果,求代數(shù)式(
a+8
a2-4a+4
-
1
2-a
)÷
a+3
a2-2a
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

先化簡,再求值:(
1
x2-2x
-
1
x2-4x+4
2
x2-2x
,其中x=
3

查看答案和解析>>

同步練習(xí)冊答案